Multi-Grained feature aggregation based on Transformer for unsupervised person re-identification

被引:0
|
作者
Liu, Zhongmin [1 ]
Zhang, Changkai [1 ]
机构
[1] Lanzhou Univ Technol, Sch Elect Engn & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
来源
关键词
Feature Aggregation; Multi-Grained Features; Unsupervised Learning; Person Re- Identification; Attention Mechanism; ATTENTION NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person re-identification aims to retrieve specific person targets across different surveillance cameras. Due to problems such as posture changes, object occlusion, and background interference, the person re-identification effect is poor. A multi-grained feature aggregation unsupervised person reidentification based on Transformer is proposed to make full use of the extracted person features. First, a Dual-Channel Attention module is designed to enable the network to adaptively adjust the receptive field size based on multiple scales of input information, facilitating the capture of connections between different parts of the person's body. This enhances the network's ability to extract person feature information, enabling it to obtain more critical image information and output more representative person expression features. Next, an Explicit Visual Center module is proposed to capture global information and aggregate essential local information, strengthening the network's feature representation and thereby improving the model's generalization capability. Finally, validation are conducted on popular datasets such as Market1501,DukeMTMC-reID, and MSMT17. The results demonstrate that the improved model achieves higher performance metrics, yielding greater recognition accuracy and better representation of person features. Code is available at https://gitee.com/zhchkk/mgfa
引用
收藏
页码:72 / 82
页数:11
相关论文
共 50 条
  • [21] Robust feature mining transformer for occluded person re-identification
    Yang, Zhenzhen
    Chen, Yanan
    Yang, Yongpeng
    Chen, Yajie
    DIGITAL SIGNAL PROCESSING, 2023, 141
  • [22] Learning Feature Recovery Transformer for Occluded Person Re-Identification
    Xu, Boqiang
    He, Lingxiao
    Liang, Jian
    Sun, Zhenan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4651 - 4662
  • [23] Unsupervised Person Re-Identification with Transformer-based Network for Intelligent Surveillance Systems
    Cao, Ge
    Jo, Kang-Hyun
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [24] Feature Aggregation With Reinforcement Learning for Video-Based Person Re-Identification
    Zhang, Wei
    He, Xuanyu
    Lu, Weizhi
    Qiao, Hong
    Li, Yibin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (12) : 3847 - 3852
  • [25] Person Re-Identification Based on Feature Stitching
    Pan Tong
    Li Wenguo
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [26] Cluster and Scatter: A Multi-grained Active Semi-supervised Learning Framework for Scalable Person Re-identification
    Hu, Bingyu
    Zha, Zheng-Jun
    Liu, Jiawei
    Zhu, Xierong
    Xie, Hongtao
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2605 - 2614
  • [27] Person re-identification based on multi-scale feature learning
    Li, Yueying
    Liu, Li
    Zhu, Lei
    Zhang, Huaxiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [28] Unsupervised Person Re-Identification Based on Measurement Axis
    Li, Jiahan
    Cheng, Deqiang
    Liu, Ruihang
    Kou, Qiqi
    Zhao, Kai
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 379 - 383
  • [29] Unsupervised Person Re-Identification Based on Intermediate Domains
    Jiao, Haijie
    Ding, Mengyuan
    Zhang, Shanshan
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [30] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782