Person re-identification based on multi-scale feature learning

被引:21
|
作者
Li, Yueying [1 ]
Liu, Li [1 ,2 ]
Zhu, Lei [1 ,2 ]
Zhang, Huaxiang [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Shandong, Peoples R China
[2] Shandong Normal Univ, Inst Data Sci & Technol, Jinan 250014, Shandong, Peoples R China
关键词
Person re-identification; Multi-scale; Representation learning; Feature fusion; ATTENTION NETWORK; NEURAL-NETWORK; ILLUMINATION;
D O I
10.1016/j.knosys.2021.107281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting discriminative pedestrian features is an effective method in person re-identification. Most person re-identification works focus on extracting abstract features from the high-layer of the network, but ignore the middle-layer features, thus reducing the identity accuracy. To solve this problem, we construct a Smooth Aggregation Module (SAM) to extract, align, and fuse the feature maps in the middle-layer of the network to make up for the lack of detailed information in the high-level network features, and propose an Omni-Scale Feature Aggregation method (OSFA)(1) to jointly learn the abstract features and local detail features. Considering that the intra-class distance in person re-identification should be less than the inter-class distance, we combine multiple losses to constrain the model. We evaluate the performance of our method on three standard benchmark datasets: Market-1501, CUHK03 (both detected and labeled) and DukeMTMC-reID, and experimental results show that our method is superior to the state-of-the-art approaches. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Contextual Multi-Scale Feature Learning for Person Re-Identification
    Fan, Baoyu
    Wang, Li
    Zhang, Runze
    Guo, Zhenhua
    Zhao, Yaqian
    Li, Rengang
    Gong, Weifeng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 655 - 663
  • [2] Multi-scale feature combination for person re-identification
    Huang, Bailiang
    Piao, Yan
    Zhang, Hao
    Tang, Yanfeng
    IET IMAGE PROCESSING, 2022, 16 (07) : 2001 - 2011
  • [3] Multi-scale feature representation for person re-identification
    Lu J.
    Wang H.-Y.
    Chen X.
    Zhang K.-B.
    Liu W.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (12): : 3015 - 3022
  • [4] Multi-scale joint learning for person re-identification
    Xie P.
    Xu X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 613 - 622
  • [5] Discriminative multi-scale adjacent feature for person re-identification
    Mengzan Qi
    Sixian Chan
    Feng Hong
    Yuan Yao
    Xiaolong Zhou
    Complex & Intelligent Systems, 2024, 10 : 4557 - 4569
  • [6] Discriminative multi-scale adjacent feature for person re-identification
    Qi, Mengzan
    Chan, Sixian
    Hong, Feng
    Yao, Yuan
    Zhou, Xiaolong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 4557 - 4569
  • [7] Multi-scale feature fusion network for person re-identification
    Wang, Yongjie
    Zhang, Wei
    Liu, Yanyan
    IET IMAGE PROCESSING, 2020, 14 (17) : 4614 - 4620
  • [8] Multi-scale Deep Learning Architectures for Person Re-identification
    Qian, Xuelin
    Fu, Yanwei
    Jiang, Yu-Gang
    Xiang, Tao
    Xue, Xiangyang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5409 - 5418
  • [9] Person Re-Identification by Deep Learning Multi-Scale Representations
    Chen, Yanbei
    Zhu, Xiatian
    Gong, Shaogang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2590 - 2600
  • [10] Combination of validity aggregation and multi-scale feature for person re-identification
    Huang, Zhi-yong
    Qin, Wen-cheng
    Luo, Fen
    Guan, Tian-hui
    Xie, Fang
    Han, Shu
    Sun, Da-ming
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3353 - 3368