New results for the random nearest neighbor tree

被引:1
|
作者
Lichev, Lyuben [1 ,3 ]
Mitsche, Dieter [1 ,2 ]
机构
[1] Univ Jean Monnet, Inst Camille Jordan, St Etienne, France
[2] Pont Univ Catolica, IMC, Santiago, Chile
[3] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
关键词
05C80; 60C05; 60D05; PLANE; CONNECTIVITY; PERCOLATION; NETWORK; HEIGHTS;
D O I
10.1007/s00440-024-01268-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the online nearest neighbor random tree in dimension d is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document} (called d-NN tree for short) defined as follows. We fix the torus Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} of dimension d and area n and equip it with the metric inherited from the Euclidean metric in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document}. Then, embed consecutively n vertices in Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} uniformly at random and independently, and let each vertex but the first one connect to its (already embedded) nearest neighbor. Call the resulting graph Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. We show multiple results concerning the degree sequence of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. First, we prove that typically the number of vertices of degree at least k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document} in the d-NN tree decreases exponentially with k and is tightly concentrated by a new Lipschitz-type concentration inequality that may be of independent interest. Second, we obtain that the maximum degree of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is of logarithmic order. Third, we give explicit bounds for the number of leaves that are independent of the dimension and also give estimates for the number of paths of length two. Moreover, we show that typically the height of a uniformly chosen vertex in Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is (1+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+o(1))\log n$$\end{document} and the diameter of Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} is (2e+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2e+o(1))\log n$$\end{document}, independently of the dimension. Finally, we define a natural infinite analog G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} and show that it corresponds to the local limit of the sequence of finite graphs (Gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_{n \ge 1}$$\end{document}. Furthermore, we prove almost surely that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is locally finite, that the simple random walk on G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is recurrent, and that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is connected.
引用
收藏
页码:229 / 279
页数:51
相关论文
共 50 条
  • [41] K-nearest Neighbor Search by Random Projection Forests
    Yan, Donghui
    Wang, Yingjie
    Wang, Jin
    Wang, Honggang
    Li, Zhenpeng
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4775 - 4781
  • [42] Analysis of nearest neighbor load balancing algorithms for random loads
    Sanders, P
    PARALLEL COMPUTING, 1999, 25 (08) : 1013 - 1033
  • [43] On the Number of Cutpoints of the Transient Nearest Neighbor Random Walk on the Line
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2010, 23 : 624 - 638
  • [44] Random K-nearest neighbor algorithm with learning process
    Fu Z.-L.
    Chen X.-Q.
    Ren W.
    Yao Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (01): : 209 - 220
  • [45] A Gibbsian Random Tree with Nearest Neighbour Interaction
    Collet, Pierre
    Dunlop, Francois
    Huillet, Thierry
    Mardin, Arif
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
  • [46] A Gibbsian Random Tree with Nearest Neighbour Interaction
    Pierre Collet
    François Dunlop
    Thierry Huillet
    Arif Mardin
    Journal of Statistical Physics, 190
  • [47] A new nearest neighbor rule for text categorization
    Gil-Garcia, Reynaldo
    Pons-Porrata, Aurora
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 814 - 823
  • [48] NEW ERROR BOUNDS WITH THE NEAREST NEIGHBOR RULE
    DEVIJVER, PA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (06) : 749 - 753
  • [49] The nearest neighbor
    Alt, H
    COMPUTATIONAL DISCRETE MATHEMATICS: ADVANCED LECTURES, 2001, 2122 : 13 - 24
  • [50] On the nearest neighbor of the nearest neighbor in multidimensional continuous and quantized space
    Rovatti, Riccardo
    Mazzini, Gianluca
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 4069 - 4080