New results for the random nearest neighbor tree

被引:1
|
作者
Lichev, Lyuben [1 ,3 ]
Mitsche, Dieter [1 ,2 ]
机构
[1] Univ Jean Monnet, Inst Camille Jordan, St Etienne, France
[2] Pont Univ Catolica, IMC, Santiago, Chile
[3] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
关键词
05C80; 60C05; 60D05; PLANE; CONNECTIVITY; PERCOLATION; NETWORK; HEIGHTS;
D O I
10.1007/s00440-024-01268-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the online nearest neighbor random tree in dimension d is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document} (called d-NN tree for short) defined as follows. We fix the torus Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} of dimension d and area n and equip it with the metric inherited from the Euclidean metric in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document}. Then, embed consecutively n vertices in Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} uniformly at random and independently, and let each vertex but the first one connect to its (already embedded) nearest neighbor. Call the resulting graph Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. We show multiple results concerning the degree sequence of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. First, we prove that typically the number of vertices of degree at least k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document} in the d-NN tree decreases exponentially with k and is tightly concentrated by a new Lipschitz-type concentration inequality that may be of independent interest. Second, we obtain that the maximum degree of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is of logarithmic order. Third, we give explicit bounds for the number of leaves that are independent of the dimension and also give estimates for the number of paths of length two. Moreover, we show that typically the height of a uniformly chosen vertex in Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is (1+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+o(1))\log n$$\end{document} and the diameter of Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} is (2e+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2e+o(1))\log n$$\end{document}, independently of the dimension. Finally, we define a natural infinite analog G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} and show that it corresponds to the local limit of the sequence of finite graphs (Gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_{n \ge 1}$$\end{document}. Furthermore, we prove almost surely that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is locally finite, that the simple random walk on G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is recurrent, and that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is connected.
引用
收藏
页码:229 / 279
页数:51
相关论文
共 50 条
  • [21] Nearest-neighbor directed random hyperbolic graphs
    Kasyanov, I. A.
    van der Hoorn, P.
    Krioukov, D.
    Tamm, M., V
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [22] Robust Nonparametric Nearest Neighbor Random Process Clustering
    Tschannen, Michael
    Bolcskei, Helmut
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 6009 - 6023
  • [23] Random projection ensemble adaptive nearest neighbor classification
    Kang, Jongkyeong
    Jhun, Myoungshic
    KOREAN JOURNAL OF APPLIED STATISTICS, 2021, 34 (03) : 401 - 410
  • [24] Transient Nearest Neighbor Random Walk and Bessel Process
    Csaki, Endre
    Foeldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (04) : 992 - 1009
  • [25] Random nearest neighbor graphs: The translation invariant case
    Bock, Bounghun
    Damron, Michael
    Hanson, Jack
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 849 - 866
  • [26] Transient Nearest Neighbor Random Walk and Bessel Process
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2009, 22 : 992 - 1009
  • [27] Approximation results toward nearest neighbor heuristic
    Monnot, Jérôme
    Yugoslav Journal of Operations Research, 2002, 12 (01) : 11 - 16
  • [28] SubPatch: Random kd-tree on a Sub-sampled Patch Set for Nearest Neighbor Field Estimation
    Pedersoli, Fabrizio
    Benini, Sergio
    Adami, Nicola
    Okuda, Masahiro
    Leonardi, Riccardo
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [29] Random projection-based auxiliary information can improve tree-based nearest neighbor search
    Keivani, Omid
    Sinha, Kaushik
    INFORMATION SCIENCES, 2021, 546 : 526 - 542
  • [30] Faster Dual-Tree Traversal for Nearest Neighbor Search
    Curtin, Ryan R.
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2015, 2015, 9371 : 77 - 89