New results for the random nearest neighbor tree

被引:1
|
作者
Lichev, Lyuben [1 ,3 ]
Mitsche, Dieter [1 ,2 ]
机构
[1] Univ Jean Monnet, Inst Camille Jordan, St Etienne, France
[2] Pont Univ Catolica, IMC, Santiago, Chile
[3] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
关键词
05C80; 60C05; 60D05; PLANE; CONNECTIVITY; PERCOLATION; NETWORK; HEIGHTS;
D O I
10.1007/s00440-024-01268-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the online nearest neighbor random tree in dimension d is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document} (called d-NN tree for short) defined as follows. We fix the torus Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} of dimension d and area n and equip it with the metric inherited from the Euclidean metric in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document}. Then, embed consecutively n vertices in Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} uniformly at random and independently, and let each vertex but the first one connect to its (already embedded) nearest neighbor. Call the resulting graph Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. We show multiple results concerning the degree sequence of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document}. First, we prove that typically the number of vertices of degree at least k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {N}}$$\end{document} in the d-NN tree decreases exponentially with k and is tightly concentrated by a new Lipschitz-type concentration inequality that may be of independent interest. Second, we obtain that the maximum degree of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is of logarithmic order. Third, we give explicit bounds for the number of leaves that are independent of the dimension and also give estimates for the number of paths of length two. Moreover, we show that typically the height of a uniformly chosen vertex in Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} is (1+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+o(1))\log n$$\end{document} and the diameter of Tnd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}<^>d_n$$\end{document} is (2e+o(1))logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2e+o(1))\log n$$\end{document}, independently of the dimension. Finally, we define a natural infinite analog G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} of Gn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n$$\end{document} and show that it corresponds to the local limit of the sequence of finite graphs (Gn)n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_{n \ge 1}$$\end{document}. Furthermore, we prove almost surely that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is locally finite, that the simple random walk on G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is recurrent, and that G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} is connected.
引用
收藏
页码:229 / 279
页数:51
相关论文
共 50 条
  • [1] The random bipartite nearest neighbor graphs
    Pittel, B
    Weishaar, RS
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 279 - 310
  • [2] A new fast reduction technique based on binary nearest neighbor tree
    Li, Juan
    Wang, Yuping
    NEUROCOMPUTING, 2015, 149 : 1647 - 1657
  • [4] Transient Nearest Neighbor Random Walk on the Line
    Csaki, Endre
    Foeldes, Antonia
    Revesz, Pal
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (01) : 100 - 122
  • [5] Transient Nearest Neighbor Random Walk on the Line
    Endre Csáki
    Antónia Földes
    Pál Révész
    Journal of Theoretical Probability, 2009, 22 : 100 - 122
  • [6] NEAREST NEIGHBOR ESTIMATORS FOR RANDOM-FIELDS
    TRAN, LT
    YAKOWITZ, S
    JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 44 (01) : 23 - 46
  • [7] The homotopical reduction of a nearest neighbor random walk*
    J. Fontbona
    S. Martínez
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 509 - 528
  • [8] Nonparametric Nearest Neighbor Random Process Clustering
    Tschannen, Michael
    Bolcskei, Helmut
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1207 - 1211
  • [9] K nearest neighbor edition to guide classification tree learning:: Motivation and experimental results
    Martínez-Otzeta, JM
    Sierra, B
    Lazkano, E
    Astigarraga, A
    DATA MINING: THEORY, METHODOLOGY, TECHNIQUES, AND APPLICATIONS, 2006, 3755 : 53 - 63
  • [10] NEAREST NEIGHBOR ANALYSIS OF RANDOM DISTRIBUTIONS ON A SPHERE
    SCOTT, D
    TOUT, CA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1989, 241 (01) : 109 - 117