Extended plane wave expansion formulation for viscoelastic phononic thin plates

被引:4
|
作者
Miranda Jr, E. J. P. [1 ,2 ,3 ]
Dal Poggetto, V. F. [4 ]
Pugno, N. M. [4 ,5 ]
Dos Santos, J. M. C. [6 ]
机构
[1] Fed Inst Maranhao, IFMA EIB DE, Rua Afonso Pena 174, BR-65010030 Sao Luis, MA, Brazil
[2] Fed Inst Maranhao, IFMA PPGEM, Ave Getulio Vargas 4, BR-65030005 Sao Luis, MA, Brazil
[3] Vale Inst Technol, ITV MI, Rua Prof Paulo Magalhaes Gomes Bauxita, BR-35400000 Ouro Preto, MG, Brazil
[4] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired Bion Nano Meta Mat & Mech, I-38123 Trento, Italy
[5] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[6] Univ Estadual Campinas, UNICAMP FEM DMC, Rua Mendeleyev 200, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Wave attenuation; Viscoelasticity; Evanescent Bloch waves; Periodic Kirchhoff-Love plates; Phononic structures; BAND-STRUCTURE; PLATONIC CRYSTAL; GAPS;
D O I
10.1016/j.wavemoti.2023.103222
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The extended plane wave expansion (EPWE) formulation is derived to obtain the complex band structure of flexural waves in viscoelastic thin phononic crystal plates considering the Kirchhoff-Love plate theory. The presented formulation yields the evanescent behavior of flexural waves in periodic thin plates considering viscoelastic effects. The viscosity is modeled by the standard linear solid model (SLSM), typically used to closely model the behavior of polymers. It is observed that the viscoelasticity influences significantly both the propagating and evanescent Bloch modes. The highest wave attenuation of the viscoelastic phononic thin plate is found around a unit cell filling fraction of 0.37 for higher frequencies considering the least attenuated wave mode. This EPWE formulation broadens the suitable methods to handle evanescent flexural waves in 2-D thin periodic plate systems considering the effects of viscoelasticity on wave attenuation.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] A VARIATIONAL FORMULATION OF BEAMS AND PLATES ON UNILATERAL VISCOELASTIC FOUNDATIONS
    KUCZMA, MS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (04): : T178 - T181
  • [32] Modelling Propagating Bloch Waves in Magnetoelectroelastic Phononic Structures with Kagome Lattice Using the Improved Plane Wave Expansion
    Pedrosa de Miranda, Edson Jansen, Jr.
    Rodrigues, Samuel Filgueiras
    Aranas, Clodualdo, Jr.
    Cantanhede da Silva, Helio Vitor
    Silva, Eden Santos
    Reis, Gedeon Silva
    Macedo Paiva, Antonio Ernandes
    Campos Dos Santos, Jose Maria
    CRYSTALS, 2020, 10 (07): : 1 - 8
  • [33] Multipole expansion of a plane wave
    del Castillo, GFT
    Hernández-Moreno, FJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 5172 - 5178
  • [34] CIRCULAR VISCOELASTIC PLATES SUBJECTED TO IN-PLANE LOADS
    DELEEUW, SL
    AIAA JOURNAL, 1971, 9 (05) : 931 - &
  • [35] ON THE PLANE DEFORMATION OF FIBER-REINFORCED VISCOELASTIC PLATES
    ALLAM, MNM
    APPLEBY, PG
    APPLIED MATHEMATICAL MODELLING, 1985, 9 (05) : 341 - 346
  • [36] Inversion of ultrasonic, plane-wave transmission data in composite plates to infer viscoelastic material properties
    Castaings, M
    Hosten, B
    Kundu, T
    NDT & E INTERNATIONAL, 2000, 33 (06) : 377 - 392
  • [37] Transient vibration of thin viscoelastic orthotropic plates
    Soukup, J.
    Vales, F.
    Volek, J.
    Skocilas, J.
    ACTA MECHANICA SINICA, 2011, 27 (01) : 98 - 107
  • [38] Transient vibration of thin viscoelastic orthotropic plates
    J.Soukup
    F.Vale
    J.Volek
    J.Skoilas
    Acta Mechanica Sinica, 2011, 27 (01) : 98 - 107
  • [39] On the creep buckling of orthotropic viscoelastic thin plates
    Beijing Univ of Aeronautics and, Astronautics, Beijing, China
    Beijing Hangkong Hangtian Daxue Xuebao, 3 (296-301):
  • [40] Transient vibration of thin viscoelastic orthotropic plates
    J. Soukup
    F. Valeš
    J. Volek
    J. Skočilas
    Acta Mechanica Sinica, 2011, 27 : 98 - 107