Extended plane wave expansion formulation for viscoelastic phononic thin plates

被引:4
|
作者
Miranda Jr, E. J. P. [1 ,2 ,3 ]
Dal Poggetto, V. F. [4 ]
Pugno, N. M. [4 ,5 ]
Dos Santos, J. M. C. [6 ]
机构
[1] Fed Inst Maranhao, IFMA EIB DE, Rua Afonso Pena 174, BR-65010030 Sao Luis, MA, Brazil
[2] Fed Inst Maranhao, IFMA PPGEM, Ave Getulio Vargas 4, BR-65030005 Sao Luis, MA, Brazil
[3] Vale Inst Technol, ITV MI, Rua Prof Paulo Magalhaes Gomes Bauxita, BR-35400000 Ouro Preto, MG, Brazil
[4] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired Bion Nano Meta Mat & Mech, I-38123 Trento, Italy
[5] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[6] Univ Estadual Campinas, UNICAMP FEM DMC, Rua Mendeleyev 200, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Wave attenuation; Viscoelasticity; Evanescent Bloch waves; Periodic Kirchhoff-Love plates; Phononic structures; BAND-STRUCTURE; PLATONIC CRYSTAL; GAPS;
D O I
10.1016/j.wavemoti.2023.103222
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The extended plane wave expansion (EPWE) formulation is derived to obtain the complex band structure of flexural waves in viscoelastic thin phononic crystal plates considering the Kirchhoff-Love plate theory. The presented formulation yields the evanescent behavior of flexural waves in periodic thin plates considering viscoelastic effects. The viscosity is modeled by the standard linear solid model (SLSM), typically used to closely model the behavior of polymers. It is observed that the viscoelasticity influences significantly both the propagating and evanescent Bloch modes. The highest wave attenuation of the viscoelastic phononic thin plate is found around a unit cell filling fraction of 0.37 for higher frequencies considering the least attenuated wave mode. This EPWE formulation broadens the suitable methods to handle evanescent flexural waves in 2-D thin periodic plate systems considering the effects of viscoelasticity on wave attenuation.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] Phononic thin plates with embedded acoustic black holes
    Zhu, Hongfei
    Semperlotti, Fabio
    PHYSICAL REVIEW B, 2015, 91 (10)
  • [22] MECHANICAL IMPEDANCE OF THIN VISCOELASTIC PLATES
    SUKI, B
    ACTA PHYSICA HUNGARICA, 1986, 59 (3-4) : 409 - 415
  • [23] ON THE STABILITY OF ANISOTROPIC VISCOELASTIC THIN PLATES
    Sun Yuanxiang
    Ma Hezhong
    Gao Zhentong(Research Institute of Solid Mechanics
    Chinese Journal of Aeronautics, 1997, (01) : 18 - 21
  • [24] Wave attenuation in viscoelastic hierarchical plates
    Poggetto, Vinicius F. Dal
    Miranda, Edson J. P.
    Dos Santos, Jose Maria C.
    Pugno, Nicola M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 236
  • [25] All-angle negative refraction of flexural wave propagation on phononic thin plates with multilayer inclusions
    Wang, Zuowei
    Li, Tuanjie
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, 31 (03) : 459 - 473
  • [26] Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization
    Chen, Yafeng
    Guo, Di
    Li, Yang Fan
    Li, Guangyao
    Huang, Xiaodong
    ULTRASONICS, 2019, 94 : 419 - 429
  • [27] Flexural Wave Band Gaps in Phononic Crystal Euler-Bernoulli Beams Using Wave Finite Element and Plane Wave Expansion Methods
    Pedrosa de Miranda, Edson Jansen, Jr.
    Campos dos Santos, Jose Maria
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2017, 20 : 729 - 742
  • [28] Wave propagation in viscoelastic phononic crystal rods with internal resonators
    Lou, Jia
    He, Liwen
    Yang, Jie
    Kitipornchai, Sritawat
    Wu, Huaping
    APPLIED ACOUSTICS, 2018, 141 : 382 - 392
  • [29] Plane sudden expansion flows of viscoelastic liquids
    Poole, R. J.
    Alves, M. A.
    Oliveira, P. J.
    Pinho, F. T.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 146 (1-3) : 79 - 91
  • [30] Homogenised formulation for plates with thick constrained viscoelastic core
    Zarraga, Ondiz
    Sarria, Imanol
    Garcia-Barruetabena, Jon
    Cortes, Fernando
    COMPUTERS & STRUCTURES, 2020, 229 (229)