Extended plane wave expansion formulation for viscoelastic phononic thin plates

被引:4
|
作者
Miranda Jr, E. J. P. [1 ,2 ,3 ]
Dal Poggetto, V. F. [4 ]
Pugno, N. M. [4 ,5 ]
Dos Santos, J. M. C. [6 ]
机构
[1] Fed Inst Maranhao, IFMA EIB DE, Rua Afonso Pena 174, BR-65010030 Sao Luis, MA, Brazil
[2] Fed Inst Maranhao, IFMA PPGEM, Ave Getulio Vargas 4, BR-65030005 Sao Luis, MA, Brazil
[3] Vale Inst Technol, ITV MI, Rua Prof Paulo Magalhaes Gomes Bauxita, BR-35400000 Ouro Preto, MG, Brazil
[4] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired Bion Nano Meta Mat & Mech, I-38123 Trento, Italy
[5] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[6] Univ Estadual Campinas, UNICAMP FEM DMC, Rua Mendeleyev 200, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Wave attenuation; Viscoelasticity; Evanescent Bloch waves; Periodic Kirchhoff-Love plates; Phononic structures; BAND-STRUCTURE; PLATONIC CRYSTAL; GAPS;
D O I
10.1016/j.wavemoti.2023.103222
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The extended plane wave expansion (EPWE) formulation is derived to obtain the complex band structure of flexural waves in viscoelastic thin phononic crystal plates considering the Kirchhoff-Love plate theory. The presented formulation yields the evanescent behavior of flexural waves in periodic thin plates considering viscoelastic effects. The viscosity is modeled by the standard linear solid model (SLSM), typically used to closely model the behavior of polymers. It is observed that the viscoelasticity influences significantly both the propagating and evanescent Bloch modes. The highest wave attenuation of the viscoelastic phononic thin plate is found around a unit cell filling fraction of 0.37 for higher frequencies considering the least attenuated wave mode. This EPWE formulation broadens the suitable methods to handle evanescent flexural waves in 2-D thin periodic plate systems considering the effects of viscoelasticity on wave attenuation.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Wave Focsuing in Phononic Thin Plates
    Wu, Tsung-Tsong
    Chen, Chun-Wei
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012,
  • [2] Plane wave expansion and extended plane wave expansion formulations for Mindlin-Reissner elastic metamaterial thick plates
    Miranda, E. J. P., Jr.
    Rodrigues, S. F.
    Aranas, C., Jr.
    Dos Santos, J. M. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [3] Study of improved plane wave expansion method on phononic crystal
    Zhang, Yan
    Ni, Zhi-Qiang
    Han, Lin
    Zhang, Zi-Ming
    Chen, Hai-Yan
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2011, 5 (08): : 870 - 873
  • [4] Application of plane wave expansion and stiffness matrix methods to study transmission properties and guided mode of phononic plates
    Farjallah, Hajer
    Ketata, Hassiba
    Ben Ghozlen, Mohamed Hedi
    WAVE MOTION, 2016, 64 : 68 - 78
  • [5] Combining Plane Wave Expansion and Variational Techniques for Fast Phononic Computations
    Lu, Yan
    Srivastava, Ankit
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (12)
  • [6] Convergence problem of plane-wave expansion method for phononic crystals
    Cao, YJ
    Hou, ZL
    Liu, YY
    PHYSICS LETTERS A, 2004, 327 (2-3) : 247 - 253
  • [7] Large Lamb wave band gap in phononic crystals thin plates
    Jiu-Jiu Chen
    Feng Yan
    H.L.W. Chan
    Applied Physics B, 2008, 90 : 557 - 559
  • [8] Large Lamb wave band gap in phononic crystals thin plates
    Chen, Jiu-Jiu
    Yan, Feng
    Chan, H. L. W.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 90 (3-4): : 557 - 559
  • [9] An improved fast plane wave expansion method for topology optimization of phononic crystals
    Xie, Longxiang
    Xia, Baizhan
    Liu, Jian
    Huang, Guoliang
    Lei, Jirong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 120 : 171 - 181
  • [10] Calculations of lamb wave band gaps and dispersions for piezoelectric phononic plates using Mindlin's theory-based plane wave expansion method
    Hsu, Jin-Chen
    Wu, Tsung-Tsong
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (02) : 431 - 441