Joint Client Selection and Receive Beamforming for Over-the-Air Federated Learning With Energy Harvesting

被引:7
|
作者
Chen, Caijuan [1 ]
Chiang, Yi-Han [2 ]
Lin, Hai [2 ]
Lui, John C. S. [3 ]
Ji, Yusheng [1 ,4 ]
机构
[1] Grad Univ Adv Studies, Dept Informat, SOKENDAI, Tokyo 1018430, Japan
[2] Osaka Metropolitan Univ, Dept Elect & Elect Syst Engn, Osaka 5998531, Japan
[3] Chinese Univ Hong Kong, Dept Comp Sci Engn, Hong Kong, Peoples R China
[4] Natl Inst Informat, Informat Syst Architecture Sci Res Div, Tokyo 1018430, Japan
基金
日本学术振兴会;
关键词
Training; Energy harvesting; Convergence; Array signal processing; Energy consumption; Power control; Optimization; Federated learning; over-the-air computation; client selection; receive beamforming; energy harvesting; DESIGN;
D O I
10.1109/OJCOMS.2023.3271765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a well-regarded distributed machine learning technology that leverages local computing resources while protecting privacy. The over-the-air (OTA) computation has been adopted for FL to prevent excessive consumption of communication resources by employing the superposition nature of wireless waveform. Meanwhile, energy harvesting technology can relieve the energy constraint of clients and enable durable computation for FL. However, few of the existing works on OTA FL have considered jointly performing client selection and receive beamforming optimization with energy harvesting clients. The objective of this work is to address this issue to improve the learning performance of OTA FL. Specifically, we first derive the expression of the optimality gap regarding client selection and receive beamforming design. Then, to minimize the optimality gap, a mixed-integer nonlinear programming (MINLP) problem is formulated and decomposed into two sub-problems. Next, the semidefinite relaxation method and the channel-energy-data (CED)-based method are developed to optimize the receive beamforming sub-problem and client selection sub-problem iteratively. One alternative optimization method is proposed to deal with the decoupled sub-problems for obtaining the solutions to the original MINLP problem. Our simulation results demonstrate that the proposed solution is superior to the other comparison schemes in various parameter settings.
引用
下载
收藏
页码:1127 / 1140
页数:14
相关论文
共 50 条
  • [21] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [22] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [23] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [24] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438
  • [25] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [26] Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    Gunduz, Deniz
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 227 - 242
  • [27] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [28] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [29] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi S.M.
    Fodor V.
    IEEE Transactions on Wireless Communications, 2024, 23 (08) : 1 - 1
  • [30] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,