Long-time behavior for evolution processes associated with non-autonomous nonlinear Schrödinger equation

被引:1
|
作者
Figueroa-Lopez, Rodiak N. [1 ]
Nascimento, Marcelo J. D. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565 905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Non-autonomous Schrodinger equation; Evolution process; Global well-posedness; Compact pullback attractor; Fractal dimension; FINITE DIMENSIONAL BEHAVIOR; WAVE-EQUATIONS; HYPERBOLIC-EQUATIONS; DYNAMICS; ATTRACTORS;
D O I
10.1016/j.jde.2023.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider non-autonomous nonlinear Schrodinger equation with homogeneous Dirichlet boundary conditions in a bounded smooth domain and time -dependent forcing that models the motion of waves in a quantum-mechanical system. We address the problem of the local and global well posedness and using rescaling of time we prove the existence of a compact pullback attractor for the associated evolution process. Moreover, we prove that the pullback attractor has finite fractal dimension. To the best of our knowledge, our approach has not been used in the literature to treat the non-autonomous Schrodinger equation. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 112
页数:33
相关论文
共 50 条
  • [31] The Riemann—Hilbert problem to coupled nonlinear Schrödinger equation: Long-time dynamics on the half-line
    Boling Guo
    Nan Liu
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 483 - 508
  • [32] Long-Time Asymptotics for the Focusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions in the Presence of a Discrete Spectrum
    Gino Biondini
    Sitai Li
    Dionyssios Mantzavinos
    Communications in Mathematical Physics, 2021, 382 : 1495 - 1577
  • [33] LONG-TIME BEHAVIOR OF SOLUTION FOR THE REFORMULATED NON-AUTONOMOUS ERICKSEN-LESLIE SYSTEM
    Zhang, Xin
    Zhang, Jianwen
    Wang, Danxia
    Peng, Yue-jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 171 - 188
  • [34] Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation
    W.-M. Wang
    Zhifei Zhang
    Journal of Statistical Physics, 2009, 134 : 953 - 968
  • [35] LONG-TIME DYNAMICS FOR A NON-AUTONOMOUS NAVIER-STOKES-VOIGT EQUATION IN LIPSCHITZ DOMAINS
    Yang, Xinguang
    Feng, Baowei
    de Souza, Thales Maier
    Wang, Taige
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01): : 363 - 386
  • [36] (Invited) Nonlinear Schrödinger equation: Autonomous and nonautonomous soliton
    Nandy S.
    Optik, 2023, 287
  • [37] On a nonlinear evolution Schrödinger-Hartree equation
    Sh. M. Nasibov
    Doklady Mathematics, 2006, 74 : 704 - 707
  • [38] Long-time behavior for a non-autonomous Klein-Gordon-Schrodinger system with Yukawa coupling
    Bonotto, E. M.
    Nascimento, M. J. D.
    Webler, C. M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (04):
  • [39] Long-time relaxation processes in the nonlinear Schrodinger equation
    Ovchinnikov, Yu. N.
    Sigal, I. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2011, 112 (03) : 469 - 478
  • [40] On the spectral problem associated with the time-periodic nonlinear Schrödinger equation
    Jonatan Lenells
    Ronald Quirchmayr
    Mathematische Annalen, 2020, 377 : 1193 - 1264