On the spectral problem associated with the time-periodic nonlinear Schrödinger equation

被引:0
|
作者
Jonatan Lenells
Ronald Quirchmayr
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
来源
Mathematische Annalen | 2020年 / 377卷
关键词
34L20; 35Q55; 37K15; 47A75;
D O I
暂无
中图分类号
学科分类号
摘要
According to its Lax pair formulation, the nonlinear Schrödinger (NLS) equation can be expressed as the compatibility condition of two linear ordinary differential equations with an analytic dependence on a complex parameter. The first of these equations—often referred to as the x-part of the Lax pair—can be rewritten as an eigenvalue problem for a Zakharov–Shabat operator. The spectral analysis of this operator is crucial for the solution of the initial value problem for the NLS equation via inverse scattering techniques. For space-periodic solutions, this leads to the existence of a Birkhoff normal form, which beautifully exhibits the structure of NLS as an infinite-dimensional completely integrable system. In this paper, we take the crucial steps towards developing an analogous picture for time-periodic solutions by performing a spectral analysis of the t-part of the Lax pair with a periodic potential.
引用
收藏
页码:1193 / 1264
页数:71
相关论文
共 50 条
  • [1] On the spectral problem associated with the time-periodic nonlinear Schrodinger equation
    Lenells, Jonatan
    Quirchmayr, Ronald
    MATHEMATISCHE ANNALEN, 2020, 377 (3-4) : 1193 - 1264
  • [2] Large time asymptotics of solutions to the periodic problem for the quadratic nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [3] On the inverse spectral problem for the quasi-periodic Schrödinger equation
    David Damanik
    Michael Goldstein
    Publications mathématiques de l'IHÉS, 2014, 119 : 217 - 401
  • [4] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [5] Radial Schrödinger equation: The spectral problem
    O. S. Pavlova
    A. R. Frenkin
    Theoretical and Mathematical Physics, 2000, 125 : 1506 - 1515
  • [6] The inverse problem for a nonlinear Schrödinger equation
    Yagubov G.Ya.
    Musaeva M.A.
    Journal of Mathematical Sciences, 1999, 97 (2) : 3981 - 3984
  • [7] Time Asymptotics of the Schrödinger Wave Function in Time-Periodic Potentials
    O. Costin
    R. D. Costin
    J. L. Lebowitz
    Journal of Statistical Physics, 2004, 116 : 283 - 310
  • [8] Nonlinear smoothing for the periodic generalized nonlinear Schr?dinger equation
    McConnell, Ryan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 353 - 379
  • [9] BIFURCATIONS OF PERIODIC ORBITS IN THE GENERALISED NONLINEAR SCHRÓDINGER EQUATION
    Bandara, Ravindra I.
    Giraldo, Andrus
    Broderick, Neil G. R.
    Krauskopf, Bernd
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024,
  • [10] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Mathematische Annalen, 2019, 374 : 1075 - 1138