Learning to Forecast: The Probabilistic Time Series Forecasting Challenge

被引:0
|
作者
Bracher, Johannes [1 ,2 ]
Koster, Nils [1 ]
Krueger, Fabian [1 ]
Lerch, Sebastian [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Karlsruhe, Germany
[2] Heidelberg Inst Theoret Studies, Heidelberg, Germany
来源
AMERICAN STATISTICIAN | 2024年 / 78卷 / 01期
关键词
Model evaluation and selection; Prediction; Quantile modeling; Statistics education; Time series analysis; PREDICTION;
D O I
10.1080/00031305.2023.2199800
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We report on a course project in which students submit weekly probabilistic forecasts of two weather variables and one financial variable. This real-time format allows students to engage in practical forecasting, which requires a diverse set of skills in data science and applied statistics. We describe the context and aims of the course, and discuss design parameters like the selection of target variables, the forecast submission process, the evaluation of forecast performance, and the feedback provided to students. Furthermore, we describe empirical properties of students' probabilistic forecasts, as well as some lessons learned on our part.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [41] Probabilistic forecasting of heterogeneous consumer transaction-sales time series
    Berry, Lindsay R.
    Helman, Paul
    West, Mike
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (02) : 552 - 569
  • [42] Short term probabilistic load forecasting using chaotic time series
    Fang, Rengcun
    Zhou, Jianzhong
    Zhang, Yongchuan
    Liu, Li
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37 (05): : 125 - 128
  • [43] LOGIC: Probabilistic Machine Learning for Time Series Classification
    Berns, Fabian
    Huewel, Jan David
    Beecks, Christian
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1000 - 1005
  • [44] Deep Learning-Based Time Series Forecasting Models Evaluation for the Forecast of Chlorophyll a and Dissolved Oxygen in the Mar Menor
    Lopez-Andreu, Francisco Javier
    Lopez-Morales, Juan Antonio
    Hernandez-Guillen, Zaida
    Carrero-Rodrigo, Juan Antonio
    Sanchez-Alcaraz, Marta
    Atenza-Juarez, Joaquin Francisco
    Erena, Manuel
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [45] PROBABILISTIC WIND POWER FORECASTING USING A SINGLE FORECAST
    Qadrdan, Meysam
    Ghodsi, Mansoureh
    Wu, Jianzhong
    [J]. INTERNATIONAL JOURNAL OF ENERGY AND STATISTICS, 2013, 1 (02) : 99 - 111
  • [46] Time Series Dataset Survey for Forecasting with Deep Learning
    Hahn, Yannik
    Langer, Tristan
    Meyes, Richard
    Meisen, Tobias
    [J]. FORECASTING, 2023, 5 (01): : 315 - 335
  • [47] Forecasting Financial Time Series with Multiple Kernel Learning
    Fabregues, Luis
    Arratia, Argimiro
    Belanche, Lluis A.
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 176 - 187
  • [48] Learning evolving relations for multivariate time series forecasting
    Nguyen-Thai, Binh
    Le, Vuong
    Tieu, Ngoc-Dung T.
    Tran, Truyen
    Venkatesh, Svetha
    Ramzan, Naeem
    [J]. APPLIED INTELLIGENCE, 2024, 54 (05) : 3918 - 3932
  • [49] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    [J]. NEUROCOMPUTING, 2020, 396 : 302 - 313
  • [50] A machine learning approach for forecasting hierarchical time series
    Mancuso, Paolo
    Piccialli, Veronica
    Sudoso, Antonio M.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182