Scattering Model-Based Oil-Slick-Related Parameters Estimation From Radar Remote Sensing: Feasibility and Simulation Results

被引:4
|
作者
Meng, Tingyu [1 ]
Nunziata, Ferdinando [2 ]
Yang, Xiaofeng [3 ,4 ]
Buono, Andrea [4 ]
Chen, Kun-Shan [4 ]
Migliaccio, Maurizio [5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Key Lab Microwave Imaging Technol, Beijing 100190, Peoples R China
[2] Univ Napoli Parthenope, Dipartimento Ingn, I-80143 Naples, Italy
[3] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[4] Nanjing Univ, Inst Space Earth Sci, Suzhou Campus, Suzhou 215163, Peoples R China
[5] Ist Nazl Geofis & Vulcanol, Sez Osservaz Terra, I-00143 Rome, Italy
关键词
Artificial neural network (ANN); DeepWater Horizon (DWH); oil spill; parameter inversion; scattering model; synthetic aperture radar (SAR); GULF-OF-MEXICO; SURFACE-FILMS; SEA-SURFACE; TIME-SERIES; SPILL; MULTIFREQUENCY; BACKSCATTER; IMAGERY; WAVES;
D O I
10.1109/TGRS.2024.3369023
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this study, the potential of electromagnetic scattering models to retrieve quantitative parameters of sea oil spills is investigated using an artificial intelligence (AI)-based approach. The backscattering coefficient of a slick-covered sea surface is predicted using the advanced integral equation model augmented with the model of local balance (MLB), an effective dielectric constant model, and a composite medium model to include the effect of an oil slick. Damping ratios (DRs), predicted for different oil parameters (namely, the oil thickness and seawater volume fraction), are used to train and test a four-layer neural network. Once successfully tested, the neural network is applied to an uninhabited aerial vehicle synthetic aperture radar (UAVSAR) image collected during the DeepWater Horizon (DWH) oil spill accident to retrieve the oil slick thickness and volume fraction of seawater in the oil layer. The inversion results show that the thicker (i.e., 2-4 mm) emulsions are located in the south and west of the slick and they are surrounded by thinner (i.e., < 1 mm) oil films. In addition, the seawater volume fraction in the oil slick is found to be about 20%-30%. Results are contrasted with optical data and previous studies of the same accidental oil spill, showing qualitatively good agreement.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils
    Mashimbye, Z. E.
    Cho, M. A.
    Nell, J. P.
    De Clercq, W. P.
    Van Niekerk, A.
    Turner, D. P.
    PEDOSPHERE, 2012, 22 (05) : 640 - 649
  • [32] Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data:A Case Study of Selected South African Soils
    Z E MASHIMBYE
    M A CHO
    J P NELL
    W P DE CLERCQ
    A VAN NIEKERK
    D P TURNER
    Pedosphere, 2012, (05) : 640 - 649
  • [33] Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data:A Case Study of Selected South African Soils
    Z. E. MASHIMBYE
    M. A. CHO
    J. P. NELL
    W. P. DE CLERCQ
    A. VAN NIEKERK
    D. P. TURNER
    Pedosphere, 2012, 22 (05) : 640 - 649
  • [34] Retraction Note: Research on prediction model and numerical simulation of reservoir rock mechanical parameters based on remote sensing images
    Bowen Liu
    Xiaoyong Zhong
    Zhenwei Wang
    Arabian Journal of Geosciences, 2021, 14 (24)
  • [35] Estimation of sound speed profiles based on remote sensing parameters using a scalable end-to-end tree boosting model
    Ou, Zhenyi
    Qu, Ke
    Shi, Min
    Wang, Yafen
    Zhou, Jianbo
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [36] INVERSION OF SNOW PARAMETERS FROM PASSIVE MICROWAVE REMOTE-SENSING MEASUREMENTS BY A NEURAL NETWORK TRAINED WITH A MULTIPLE-SCATTERING MODEL
    TSANG, L
    CHEN, ZX
    OH, S
    MARKS, RJ
    CHANG, ATC
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (05): : 1015 - 1024
  • [37] Model-based analysis of X-band scattering from oil-covered sea surface using SAR imagery
    Meng, Tingyu
    Nunziata, Ferdinando
    Yang, Xiaofeng
    Migliaccio, Maurizio
    2022 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA LEARNING TO MEASURE SEA HEALTH PARAMETERS (METROSEA), 2022, : 373 - 377
  • [38] SNOW-MANTLE REMOTE SENSING FROM SPACEBORNE SAR INTERFEROMETRY USING A MODEL-BASED SYNERGETIC RETRIEVAL APPROACH IN CENTRAL APENNINES
    Palermo, G.
    Raparelli, E.
    Romero, N. Alvan
    Manzi, M. P.
    Papa, M.
    Biscarini, M.
    Tuccella, P.
    Lombardi, A.
    Colaiuda, V.
    Tomassetti, B.
    Cimini, D.
    Pettinelli, E.
    Mattei, E.
    Lauro, S.
    Cosciotti, B.
    Picciotti, E.
    Di Fabio, S.
    Bernardini, L.
    Cinque, G.
    Cappelletti, D. M.
    Petroselli, C.
    Pecci, M.
    Pecci, Mt.
    D'Aquila, P.
    Martinelli, M.
    Caira, T.
    Di Fiore, T.
    Boccabella, P.
    Marzano, F. S.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4514 - 4517
  • [39] Comparative assessment of soil moisture estimation from land surface model and satellite remote sensing based on catchment water balance
    Al-Shrafany, Deleen
    Rico-Ramirez, Miguel A.
    Han, Dawei
    Bray, Michaela
    METEOROLOGICAL APPLICATIONS, 2014, 21 (03) : 521 - 534
  • [40] Simulation study on the design of key technical parameters in marine environment sounding with fully polarimetric synthetic aperture radar based on ocean surface scattering model
    Zhao Xian-Bin
    Yan Wei
    Wang Ying-Qiang
    Lu Wen
    Ma Shuo
    ACTA PHYSICA SINICA, 2014, 63 (21)