Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils

被引:84
|
作者
Mashimbye, Z. E. [1 ,3 ,4 ]
Cho, M. A. [2 ,5 ]
Nell, J. P. [3 ]
De Clercq, W. P. [1 ]
Van Niekerk, A. [4 ]
Turner, D. P. [3 ]
机构
[1] Univ Stellenbosch, Dept Soil Sci, ZA-7602 Matieland, South Africa
[2] Council Sci & Ind Res Nat Resources & Environm, ZA-0001 Pretoria, South Africa
[3] Inst Soil Climate & Water, Agr Res Council, ZA-0001 Pretoria, South Africa
[4] Univ Stellenbosch, Dept Geog & Environm Studies, ZA-7602 Matieland, South Africa
[5] Univ Kwazulu Natal, Sch Environm Sci, ZA-3630 Westville, South Africa
基金
新加坡国家研究基金会;
关键词
electrical conductivity; land degradation; partial least squares regression; salinity index; spectral reflectance; SALT-AFFECTED SOILS; REFLECTANCE SPECTRA; INDEX; WATER; INDICATORS; VEGETATION; IMAGERY; SCALE;
D O I
10.1016/S1002-0160(12)60049-6
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R-2 = 0.85), PLSR using untransformed reflectance (validation R-2 = 0.70), NDSI (validation R-2 = 0.65), and the untransformed individual band at 2 257 nm (validation R-2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons.
引用
收藏
页码:640 / 649
页数:10
相关论文
共 36 条
  • [1] Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data:A Case Study of Selected South African Soils
    Z. E. MASHIMBYE
    M. A. CHO
    J. P. NELL
    W. P. DE CLERCQ
    A. VAN NIEKERK
    D. P. TURNER
    [J]. Pedosphere, 2012, 22 (05) : 640 - 649
  • [2] Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data:A Case Study of Selected South African Soils
    Z E MASHIMBYE
    M A CHO
    J P NELL
    W P DE CLERCQ
    A VAN NIEKERK
    D P TURNER
    [J]. Pedosphere, 2012, (05) - 649
  • [3] Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China
    Wang, Libing
    Zhang, Bo
    Shen, Qian
    Yao, Yue
    Zhang, Shengyin
    Wei, Huaidong
    Yao, Rongpeng
    Zhang, Yaowen
    [J]. WATER, 2021, 13 (04)
  • [4] A study on model-based methods for soil moisture estimations from SAR data
    Satalino, G
    Pasquariello, G
    Mattia, F
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES VI, 2004, 5236 : 128 - 135
  • [5] Quantitative assessment of soil salinity using remote sensing data based on the artificial neural network, case study: Sharif Abad Plain, Central Iran
    Habibi, Vahid
    Ahmadi, Hasan
    Jafari, Mohammad
    Moeini, Abolfazl
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (02) : 1373 - 1383
  • [6] Quantitative assessment of soil salinity using remote sensing data based on the artificial neural network, case study: Sharif Abad Plain, Central Iran
    Vahid Habibi
    Hasan Ahmadi
    Mohammad Jafari
    Abolfazl Moeini
    [J]. Modeling Earth Systems and Environment, 2021, 7 : 1373 - 1383
  • [7] Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey
    Gorji, Taha
    Sertel, Elif
    Tanik, Aysegul
    [J]. ECOLOGICAL INDICATORS, 2017, 74 : 384 - 391
  • [8] Spectral Unmixing-Based Crop Residue Estimation Using Hyperspectral Remote Sensing Data: A Case Study at Purdue University
    Chi, Junhwa
    Crawford, Melba M.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2531 - 2539
  • [9] Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India
    Murali Krishna Gumma
    M. D. M. Kadiyala
    Pranay Panjala
    Shibendu S. Ray
    Venkata Radha Akuraju
    Sunil Dubey
    Andrew P. Smith
    Rajesh Das
    Anthony M. Whitbread
    [J]. Journal of the Indian Society of Remote Sensing, 2022, 50 : 257 - 270
  • [10] Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation: A Case Study from India
    Gumma, Murali Krishna
    Kadiyala, M. D. M.
    Panjala, Pranay
    Ray, Shibendu S.
    Akuraju, Venkata Radha
    Dubey, Sunil
    Smith, Andrew P.
    Das, Rajesh
    Whitbread, Anthony M.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) : 257 - 270