A hybrid mixed finite element method for convection-diffusion-reaction equation with local exponential fitting technique

被引:4
|
作者
Zhang, Jiansong [1 ]
Zhu, Jiang [2 ]
Poblete, Hector Andres Vargas [3 ]
Jiang, Maosheng [4 ]
机构
[1] China Univ Petr, Dept Appl Math, Qingdao 266580, Peoples R China
[2] MCTI, Lab Nacl Computacao Cient, Ave Getulio Vargas 333, BR-25651075 Petropolis, RJ, Brazil
[3] Bio Bio Univ, Dept Math, Avda Collao 1202, Concepcion, Chile
[4] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Local exponential fitting; Mixed hybrid discontinuous Galerkin; method; Convection-diffusion-reaction equation; Convection-dominated; DISCONTINUOUS GALERKIN METHOD; BOUNDARY VALUE-PROBLEMS; SALTWATER INTRUSION; EULER;
D O I
10.1016/j.apnum.2023.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new hybrid mixed finite element method is proposed for solving the convection-diffusion-reaction equation with local exponential fitting technique. In this method, the exponential fitting technique in [7] is used to discretize the convection-diffusion-reaction equation by introducing a new variable at element level; then the hybrid mixed discontinuous Galerkin finite element method is used to approximate the discretized problem. The convergence of the proposed method is analyzed, and the corresponding a priori error estimate is derived. The numerical results are presented to confirm our theoretical analysis. (c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [31] A WEAK GALERKIN FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION-REACTION PROBLEMS
    Lin, Runchang
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1482 - 1497
  • [32] STABILITY OF FINITE ELEMENT - FINITE VOLUME DISCRETIZATIONS OF CONVECTION-DIFFUSION-REACTION EQUATIONS
    Deuring, Paul
    Eymard, Robert
    TOPICAL PROBLEMS OF FLUID MECHANICS 2015, 2015, : 47 - 52
  • [33] EXPONENTIAL TIME DIFFERENCING-PADE FINITE ELEMENT METHOD FOR NONLINEAR CONVECTION-DIFFUSION-REACTION EQUATIONS WITH TIME CONSTANT DELAY
    Dai, Haishen
    Huang, Qiumei
    Wang, Cheng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 350 - 351
  • [34] A streamline-derivative-based local projection stabilization virtual element method for nonlinear convection-diffusion-reaction equation
    Mishra, Sudheer
    Natarajan, E.
    CALCOLO, 2023, 60 (04)
  • [35] On the stability of finite-element discretizations of convection-diffusion-reaction equations
    Knobloch, Petr
    Tobiska, Lutz
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 147 - 164
  • [36] A New Upwind Finite Volume Element Method for Convection-Diffusion-Reaction Problems on Quadrilateral Meshes
    Li, Ang
    Yang, Hongtao
    Gao, Yulong
    Li, Yonghai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (01) : 239 - 272
  • [37] A Non-standard Finite Element Method for Convection-Diffusion-Reaction Problems on Polyhedral Meshes
    Hofreither, C.
    Langer, U.
    Pechstein, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [38] A Tailored Finite Point Method for Convection-Diffusion-Reaction Problems
    Yintzer Shih
    R. Bruce Kellogg
    Peishan Tsai
    Journal of Scientific Computing, 2010, 43 : 239 - 260
  • [39] A modified finite volume method for convection-diffusion-reaction problems
    Xu, Mingtian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 : 658 - 668
  • [40] A Tailored Finite Point Method for Convection-Diffusion-Reaction Problems
    Shih, Yintzer
    Kellogg, R. Bruce
    Tsai, Peishan
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 43 (02) : 239 - 260