A hybrid mixed finite element method for convection-diffusion-reaction equation with local exponential fitting technique

被引:4
|
作者
Zhang, Jiansong [1 ]
Zhu, Jiang [2 ]
Poblete, Hector Andres Vargas [3 ]
Jiang, Maosheng [4 ]
机构
[1] China Univ Petr, Dept Appl Math, Qingdao 266580, Peoples R China
[2] MCTI, Lab Nacl Computacao Cient, Ave Getulio Vargas 333, BR-25651075 Petropolis, RJ, Brazil
[3] Bio Bio Univ, Dept Math, Avda Collao 1202, Concepcion, Chile
[4] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Local exponential fitting; Mixed hybrid discontinuous Galerkin; method; Convection-diffusion-reaction equation; Convection-dominated; DISCONTINUOUS GALERKIN METHOD; BOUNDARY VALUE-PROBLEMS; SALTWATER INTRUSION; EULER;
D O I
10.1016/j.apnum.2023.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new hybrid mixed finite element method is proposed for solving the convection-diffusion-reaction equation with local exponential fitting technique. In this method, the exponential fitting technique in [7] is used to discretize the convection-diffusion-reaction equation by introducing a new variable at element level; then the hybrid mixed discontinuous Galerkin finite element method is used to approximate the discretized problem. The convergence of the proposed method is analyzed, and the corresponding a priori error estimate is derived. The numerical results are presented to confirm our theoretical analysis. (c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [11] A LOCAL PROJECTION STABILIZATION FINITE ELEMENT METHOD WITH NONLINEAR CROSSWIND DIFFUSION FOR CONVECTION-DIFFUSION-REACTION EQUATIONS
    Barrenechea, Gabriel R.
    John, Volker
    Knobloch, Petr
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (05): : 1335 - 1366
  • [12] Nonconforming modified Quasi-Wilson finite element method for convection-diffusion-reaction equation
    Zhang, Sihui
    Shi, Xiangyu
    Shi, Dongyang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [13] Finite volume method for convection-diffusion-reaction equation on triangular meshes
    Phongthanapanich, S.
    Dechaumphai, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (06) : 716 - 727
  • [14] A robust WG finite element method for convection-diffusion-reaction equations
    Chen, Gang
    Feng, Minfu
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 : 107 - 125
  • [15] Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation
    Burman, Erik
    Fernandez, Miguel A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) : 2508 - 2519
  • [16] A Linearized Adaptive Dynamic Diffusion Finite Element Method for Convection-Diffusion-Reaction Equations
    Shaohong Du
    Qianqian Hou
    Xiaoping Xie
    Annals of Applied Mathematics, 2023, 39 (03) : 323 - 351
  • [17] An exponential-fitting finite element method for convection-diffusion problems
    Shih, Yintzer
    Cheng, Jun-Yong
    Chen, Kuen-Tsann
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5798 - 5809
  • [18] Virtual element method for the quasilinear convection-diffusion-reaction equation on polygonal meshes
    M. Arrutselvi
    E. Natarajan
    S. Natarajan
    Advances in Computational Mathematics, 2022, 48
  • [19] Virtual element method for the quasilinear convection-diffusion-reaction equation on polygonal meshes
    Arrutselvi, M.
    Natarajan, E.
    Natarajan, S.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)
  • [20] Virtual element method for nonlinear convection-diffusion-reaction equation on polygonal meshes
    Arrutselvi, M.
    Natarajan, E.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (09) : 1852 - 1876