Machine learning-based classification of Alzheimer's disease and its at-risk states using personality traits, anxiety, and depression

被引:3
|
作者
Waschkies, Konrad F. [1 ,2 ]
Soch, Joram [1 ,3 ]
Darna, Margarita [1 ,4 ]
Richter, Anni [4 ,5 ,6 ]
Altenstein, Slawek [7 ,8 ]
Beyle, Aline [9 ,10 ]
Brosseron, Frederic [9 ]
Buchholz, Friederike [7 ,11 ,12 ,13 ,14 ]
Butryn, Michaela [15 ,16 ]
Dobisch, Laura [15 ]
Ewers, Michael [17 ,18 ]
Fliessbach, Klaus [9 ,19 ]
Gabelin, Tatjana
Glanz, Wenzel [15 ,16 ]
Goerss, Doreen [20 ,21 ]
Gref, Daria [11 ]
Janowitz, Daniel [18 ]
Kilimann, Ingo [20 ,21 ]
Lohse, Andrea [8 ]
Munk, Matthias H. [22 ,23 ,24 ]
Rauchmann, Boris-Stephan [25 ,26 ,27 ]
Rostamzadeh, Ayda [28 ]
Roy, Nina [9 ]
Spruth, Eike Jakob [7 ,8 ]
Dechent, Peter [29 ]
Heneka, Michael T. [9 ]
Hetzer, Stefan [30 ]
Ramirez, Alfredo [9 ,19 ,31 ,32 ,33 ,34 ,35 ]
Scheffler, Klaus [36 ]
Buerger, Katharina [17 ,18 ]
Laske, Christoph [22 ,23 ,24 ]
Perneczky, Robert [17 ,25 ,26 ,37 ,38 ]
Peters, Oliver [7 ,11 ,12 ,13 ,14 ]
Priller, Josef [7 ,8 ,39 ,40 ,41 ]
Schneider, Anja [9 ,19 ]
Spottke, Annika [9 ,10 ]
Teipel, Stefan [20 ,21 ]
Duezel, Emrah [15 ,16 ]
Jessen, Frank [9 ,28 ,31 ]
Wiltfang, Jens [1 ,2 ,42 ]
Schott, Bjoern H. [1 ,2 ,4 ]
Kizilirmak, Jasmin M. [1 ,43 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Gottingen, Germany
[2] Univ Med Ctr Gottingen, Dept Psychiat & Psychotherapy, Gottingen, Germany
[3] Bernstein Ctr Computat Neurosci, Berlin, Germany
[4] Leibniz Inst Neurobiol, Magdeburg, Germany
[5] German Ctr Mental Hlth DZPG, Munich, Germany
[6] Ctr Intervent & Res Adapt & Maladapt Brain Circui, Jena, Germany
[7] German Ctr Neurodegenerat Dis DZNE, Berlin, Germany
[8] Charite, Dept Psychiat & Psychotherapy, Berlin, Germany
[9] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
[10] Univ Bonn, Dept Neurol, Bonn, Germany
[11] Charite Univ Med Berlin, Berlin, Germany
[12] Free Univ Berlin, Berlin, Germany
[13] Humboldt Univ, Berlin, Germany
[14] Berlin Inst Psychiat & Psychotherapy, Berlin, Germany
[15] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[16] Otto von Guericke Univ, Inst Cognit Neurol & Dementia Res IKND, Magdeburg, Germany
[17] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[18] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Stroke & Dementia Res ISD, Munich, Germany
[19] Univ Bonn, Med Ctr, Dept Neurodegenerat Dis & Geriatr Psychiat Psychi, Bonn, Germany
[20] German Ctr Neurodegenerat Dis DZNE, Rostock, Germany
[21] Rostock Univ, Med Ctr, Dept Psychosomat Med, Rostock, Germany
[22] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[23] Univ Tubingen, Sect Dementia Res, Hertie Inst Clin Brain Res, Tubingen, Germany
[24] Univ Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[25] Ludwig Maximilians Univ Munchen, Dept Psychiat & Psychotherapy, Univ Hosp, Munich, Germany
[26] Univ Sheffield, Sheffield Inst Translat Neurosci SITraN, Sheffield, S Yorkshire, England
[27] Univ Hosp LMU, Dept Neuroradiol, Munich, Germany
[28] Univ Cologne, Fac Med, Dept Psychiat, Cologne, Germany
[29] Georg August Univ Goettingen, Dept Cognit Neurol, MR Res Neurosci, Gottingen, Germany
[30] Charite Univ Med Berlin, Berlin Ctr Adv Neuroimaging, Berlin, Germany
[31] Univ Cologne, Excellence Cluster Cellular Stress Responses Agin, Cologne, Germany
[32] Univ Cologne, Div Neurogenet & Mol Psychiat, Dept Psychiat & Psychotherapy, Fac Med, Cologne, Germany
[33] Univ Cologne, Univ Hosp Cologne, Cologne, Germany
[34] Dept Psychiat, San Antonio, TX USA
[35] Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, San Antonio, TX USA
[36] Univ Tubingen, Dept Biomed Magnet Resonance, Tubingen, Germany
[37] Munich Cluster Syst Neurol SyNergy Munich, Munich, Germany
[38] Imperial Coll London, Sch Publ Hlth, Ageing Epidemiol Res Unit AGE, London, England
[39] Tech Univ Munich, Dept Psychiat & Psychotherapy, Sch Med, Munich, Germany
[40] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[41] UK DRI, Edinburgh, Midlothian, Scotland
[42] Univ Aveiro, Dept Med Sci, Inst Biomed iBiMED, Neurosci & Signaling Grp, Aveiro, Portugal
[43] Univ Hildesheim, Inst Psychol, Neurodidact & NeuroLab, Hildesheim, Germany
关键词
Alzheimer's disease; amnestic mild cognitive impairment; biomarker; cerebrospinal fluid; fMRI; machine learning; personality; resting-state; subjective cognitive decline; support vector machine; MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; CEREBROSPINAL-FLUID; DEFAULT MODE; DEMENTIA; RECOMMENDATIONS; ANOSOGNOSIA; SYMPTOMS;
D O I
10.1002/gps.6007
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages.Methods In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, A beta 42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE).ResultsMean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets.Conclusion Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Machine Learning-Based Classification Method for Monitoring Alzheimer's Disease Using Electromagnetic Radar Data
    Ullah, Rahmat
    Dong, Yinhuan
    Arslan, Tughrul
    Chandran, Siddharthan
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (09) : 4012 - 4026
  • [2] Deep Learning-Based Segmentation in Classification of Alzheimer's Disease
    Buvaneswari, P. R.
    Gayathri, R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5373 - 5383
  • [3] Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
    P. R. Buvaneswari
    R. Gayathri
    Arabian Journal for Science and Engineering, 2021, 46 : 5373 - 5383
  • [4] MACHINE LEARNING-BASED HYPERTENSION DISEASE RISK CLASSIFICATION USING LEARNING VECTOR QUANTIZATION ALGORITHM
    Fajar, Rifaldy
    Putri, Sahnaz
    Syafruddin, Elfiany
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 : I1016 - I1016
  • [5] Classification of Alzheimer's Disease using Machine Learning Techniques
    Shahbaz, Muhammad
    Ali, Shahzad
    Guergachi, Aziz
    Niazi, Aneeta
    Umer, Amina
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2019, : 296 - 303
  • [6] Machine learning-based classification of valvular heart disease using cardiovascular risk factors
    Aslam, Muhammad Usman
    Xu, Songhua
    Hussain, Sajid
    Waqas, Muhammad
    Abiodun, Nafiu Lukman
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Using machine learning-based analysis for behavioral differentiation between anxiety and depression
    Thalia Richter
    Barak Fishbain
    Andrey Markus
    Gal Richter-Levin
    Hadas Okon-Singer
    Scientific Reports, 10
  • [8] Using machine learning-based analysis for behavioral differentiation between anxiety and depression
    Richter, Thalia
    Fishbain, Barak
    Markus, Andrey
    Richter-Levin, Gal
    Okon-Singer, Hadas
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Machine Learning-Based Classification of Parkinson's Disease Patients Using Speech Biomarkers
    Hossain, Mohammad Amran
    Amenta, Francesco
    JOURNAL OF PARKINSONS DISEASE, 2024, 14 (01) : 95 - 109
  • [10] Classification of Alzheimer's Disease Using RF Signals and Machine Learning
    Saied, Imran M.
    Arslan, Tughrul
    Chandran, Siddharthan
    IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2022, 6 (01): : 77 - 85