Pre-trained language models: What do they know?

被引:0
|
作者
Guimaraes, Nuno [1 ,2 ]
Campos, Ricardo [1 ,3 ,4 ]
Jorge, Alipio [1 ,2 ]
机构
[1] LIAAD INESCTEC, Porto, Portugal
[2] Univ Porto, Porto, Portugal
[3] Univ Beira Interior, Covilha, Portugal
[4] Polytech Inst Tomar, Ci2 Smart Cities Res Ctr, Tomar, Portugal
关键词
large language models; natural language; pretrained language models; processing;
D O I
10.1002/widm.1518
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large language models (LLMs) have substantially pushed artificial intelligence (AI) research and applications in the last few years. They are currently able to achieve high effectiveness in different natural language processing (NLP) tasks, such as machine translation, named entity recognition, text classification, question answering, or text summarization. Recently, significant attention has been drawn to OpenAI's GPT models' capabilities and extremely accessible interface. LLMs are nowadays routinely used and studied for downstream tasks and specific applications with great success, pushing forward the state of the art in almost all of them. However, they also exhibit impressive inference capabilities when used off the shelf without further training. In this paper, we aim to study the behavior of pre-trained language models (PLMs) in some inference tasks they were not initially trained for. Therefore, we focus our attention on very recent research works related to the inference capabilities of PLMs in some selected tasks such as factual probing and common-sense reasoning. We highlight relevant achievements made by these models, as well as some of their current limitations that open opportunities for further research.This article is categorized under:Fundamental Concepts of Data and Knowledge > Key Design Issues in DataMiningTechnologies > Artificial Intelligence
引用
收藏
页数:10
相关论文
共 50 条
  • [1] What do pre-trained code models know about code?
    Karmakar, Anjan
    Robbes, Romain
    [J]. 2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 1332 - 1336
  • [2] What Do They Capture? - A Structural Analysis of Pre-Trained Language Models for Source Code
    Wan, Yao
    Zhao, Wei
    Zhang, Hongyu
    Sui, Yulei
    Xu, Guandong
    Jin, Hai
    [J]. 2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 2377 - 2388
  • [3] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    [J]. ENGINEERING, 2023, 25 : 51 - 65
  • [4] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    [J]. PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [5] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [6] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [7] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    [J]. 2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [8] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [9] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [10] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154