The Impact of Increasing the Length of the Conical Segment on Cyclone Performance Using Large-Eddy Simulation

被引:4
|
作者
Pandey, Satyanand [1 ]
Brar, Lakhbir Singh [1 ]
机构
[1] Birla Inst Technol, Mech Engn Dept, Ranchi 835215, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
关键词
extended cone length; cyclone separator; large-eddy simulation; pressure drop; GAS CYCLONE; FLOW; INLET; ANGLE; EFFICIENCY; PRESSURE; DIAMETER;
D O I
10.3390/sym15030682
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In cyclone separators, the asymmetrical coherent structure significantly influences the velocity fluctuations and hence the cyclone performance. This asymmetric rotating vortex in the core region precesses around the cyclone axis with a frequency that depends on the cyclone geometry and operating conditions. In the present work, we studied the impact of increasing the length of the conical segment on the performance of cyclone separators as well as the precessing frequency of the asymmetrical structure. For this, five different cone lengths were considered such that the total cyclone length equalled 3.0D, 3.5D, 4.0D, 4.5D, and 5.0D (here, D is the main body diameter of the cyclone). The study was performed at three different inlet velocities, viz. 10, 15, and 20 m/s. Throughout the work, the angle of the conical segment was held fixed and resembled the reference model (which had a total cyclone length equal to 4.0D). The cyclone performance was evaluated using advanced closure large-eddy simulation with the standard Smagorinsky subgrid-scale model. Conclusive results indicate that with an increase in the cone length, the pressure losses reduce appreciably with small variations in the collection efficiency, followed by a reduction in the precessing frequency of the asymmetric vortex core. The results further indicate that the apex cone angle (or the bottom opening diameter) must be carefully adjusted when increasing the cone length.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Large-eddy simulation of a stratocumulus cloud
    Matheou, Georgios
    Chung, Daniel
    Teixeira, Joao
    PHYSICAL REVIEW FLUIDS, 2017, 2 (09):
  • [42] LARGE-EDDY SIMULATION AND PRACTICAL MODELS
    BOUWMANS, I
    MEEDER, JP
    NIEUWSTADT, FTM
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 1995, 5 (4-6) : 331 - 337
  • [43] Large-eddy simulation of turbulent sprays
    Menon, S
    Sankaran, V
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 415 - 425
  • [44] Large-eddy simulation of radiation fog
    Nakanishi, M
    BOUNDARY-LAYER METEOROLOGY, 2000, 94 (03) : 461 - 493
  • [45] Large-eddy simulation of tundish flow
    Alkishriwi, Nouri
    Meinke, Matthias
    Schroeder, Wolfgang
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '06, 2007, : 307 - 319
  • [46] LARGE-EDDY SIMULATION - RETROSPECT AND PROSPECT
    VOKE, PR
    COLLINS, MW
    PHYSICOCHEMICAL HYDRODYNAMICS, 1983, 4 (02): : 119 - 161
  • [47] Large-eddy simulation of magnetohydrodynamic turbulence
    Müller, WC
    Carati, D
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 544 - 547
  • [48] Large-Eddy Simulation of Katabatic Flows
    Eric D. Skyllingstad
    Boundary-Layer Meteorology, 2003, 106 : 217 - 243
  • [49] Dispersion in stable boundary layers using large-eddy simulation
    Kemp, JR
    Thomson, DJ
    ATMOSPHERIC ENVIRONMENT, 1996, 30 (16) : 2911 - 2923
  • [50] Noise prediction of a rectangular jet using large-eddy simulation
    Rembold, B
    Kleiser, L
    AIAA JOURNAL, 2004, 42 (09) : 1823 - 1831