Organic phase change composite separators to enhance the safety performance of lithium-ion batteries

被引:5
|
作者
Li, Shi [1 ]
Wu, Yu [1 ]
Ma, Xingchang [1 ]
Hu, Jiwen [2 ,3 ]
Song, Qingping [1 ]
Shen, Xianrong [1 ]
Zhang, Wei [1 ,4 ]
机构
[1] Anhui Polytech Univ, Sch Chem & Environm Engn, Wuhu 241000, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Chem, Guangzhou 510650, Guangdong, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou Ind Pk, Suzhou 215123, Peoples R China
关键词
Lithium-ion batteries; Phase change; Separator; Safety performance; ENERGY-STORAGE; STATE;
D O I
10.1016/j.jpowsour.2023.233620
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries have received a great deal of attention on the world stage due to their high-power density and superior electronic properties. Herein, a novel phase change composite separator was successfully fabricated into lithium-ion battery cells by microfluidic technology. The phase change material composite separator was manufactured with polyethylene (PE) as the base film and employing the crystalline phase change property of polyethylene oxide (PEO). The phase change solution was atomized and delivered to the surface of the separator using high-pressure inert gases, and then crystallized on the separator substrate by controlling the temperature difference. The capacity retention and capacity recovery of the manufactured phase change material composite separator cells were 96.9% and 97.8%, respectively. In addition, the cells demonstrated superior multiplier performance (similar to 98% capacity retention at 1C). Additionally, the phase change material was introduced into the separator coating layer to increase the heat resistance of the separator, while the electrochemical performance was exceptional and the safety performance was favorable, thus alleviating the heat accumulation inside the battery at the source and effectively enhancing the safety of lithium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Three-Dimensional Coating Layer Modified Polyolefin Ceramic-Coated Separators to Enhance the Safety Performance of Lithium-Ion Batteries
    Peng, Longqing
    Shen, Xiu
    Dai, Jianhui
    Wang, Xin
    Zeng, Jing
    Huang, Boyang
    Li, Hang
    Zhang, Peng
    Zhao, Jinbao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A2111 - A2120
  • [22] High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective
    Zhang, Lupeng
    Li, Xinle
    Yang, Mingrui
    Chen, Weihua
    ENERGY STORAGE MATERIALS, 2021, 41 (41) : 522 - 545
  • [23] MOF composite fibrous separators for high-rate lithium-ion batteries
    Ding Huang
    Cong Liang
    Lining Chen
    Mi Tang
    Zijian Zheng
    Zhengbang Wang
    Journal of Materials Science, 2021, 56 : 5868 - 5877
  • [24] MOF composite fibrous separators for high-rate lithium-ion batteries
    Huang, Ding
    Liang, Cong
    Chen, Lining
    Tang, Mi
    Zheng, Zijian
    Wang, Zhengbang
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (09) : 5868 - 5877
  • [25] The Role of Separators in Lithium-Ion Cell Safety
    Orendorff, Christopher J.
    ELECTROCHEMICAL SOCIETY INTERFACE, 2012, 21 (02): : 61 - 65
  • [26] MOF@ Nanofiber Separators for Lithium-Ion Batteries
    Yanilmaz, Meltem
    Atik, Aleyna
    Tosun, Murat
    Zhang, Xiangwu
    Journal of Applied Polymer Science, 2024,
  • [27] Mesoporous Cladophora cellulose separators for lithium-ion batteries
    Pan, Ruijun
    Cheung, Ocean
    Wang, Zhaohui
    Tammela, Petter
    Huo, Jinxing
    Lindh, Jonas
    Edstrom, Kristina
    Stromme, Maria
    Nyholm, Leif
    JOURNAL OF POWER SOURCES, 2016, 321 : 185 - 192
  • [28] Performance of electrode-supported silica membrane separators in lithium-ion batteries
    Rafiz, Kishen
    Jin, Y.
    Lin, Y. S.
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (03): : 1254 - 1264
  • [29] Electrospun Polyimide Nanofiber Separators for Lithium-ion Batteries
    Li, Wenwang
    Che, Bangzhou
    Lin, Jinghua
    Fu, Sinan
    Jiang, Jiaxin
    Zheng, Gaofeng
    Wang, Xiang
    2021 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2021, : 1554 - 1557
  • [30] MOF@ Nanofiber Separators for Lithium-Ion Batteries
    Yanilmaz, Meltem
    Atik, Aleyna
    Tosun, Murat
    Zhang, Xiangwu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2025, 142 (10)