MOF composite fibrous separators for high-rate lithium-ion batteries

被引:0
|
作者
Ding Huang
Cong Liang
Lining Chen
Mi Tang
Zijian Zheng
Zhengbang Wang
机构
[1] Hubei University,Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering
[2] China Automotive Technology and Research Center Co.,undefined
[3] Ltd,undefined
[4] CATARC Automotive Test Center (Wuhan) Co.,undefined
[5] Ltd,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this study, metal-organic frameworks (MOF)/polyacrylonitrile (PAN) composite fibrous separators were prepared for high-rate Li-ion batteries by anchoring MOF into PAN nanofibrous network. The MOF/PAN separators possess excellent dimensional, thermal stability, intrinsically high porosity, and good electrolyte adsorption, which contribute excellent Li-ion transport capacity. The Li/Li symmetric cells assembled with MOF/PAN separators demonstrate improved coulombic efficiency, inhibition of Li dendrites, and excellent long-term cycle stability with low-voltage hysteresis of around 46 mV after more than 1200 h Li plating/stripping process, in comparison with around 350 mV after 360 h for commercialized Celgard 2400 separator. The excellent ionic transport capacity reveals impressive performance of the LiFePO4-MOF/PAN-Li metal full cells under high rate and the capacity that could be up to 104 mAh g−1 at 5 C after 2000 cycles with a coulombic efficiency of almost 100%. This work provides a new prospect for the development of high-rate lithium-ion batteries.
引用
下载
收藏
页码:5868 / 5877
页数:9
相关论文
共 50 条
  • [1] MOF composite fibrous separators for high-rate lithium-ion batteries
    Huang, Ding
    Liang, Cong
    Chen, Lining
    Tang, Mi
    Zheng, Zijian
    Wang, Zhengbang
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (09) : 5868 - 5877
  • [2] Anion-Sorbent Composite Separators for High-Rate Lithium-Ion Batteries
    Zhang, Chen
    Shen, Li
    Shen, Jianqiang
    Liu, Fang
    Chen, Gen
    Tao, Ran
    Ma, Shengxiang
    Peng, Yiting
    Lu, Yunfeng
    ADVANCED MATERIALS, 2019, 31 (21)
  • [3] MOF@ Nanofiber Separators for Lithium-Ion Batteries
    Yanilmaz, Meltem
    Atik, Aleyna
    Tosun, Murat
    Zhang, Xiangwu
    Journal of Applied Polymer Science, 2024,
  • [4] Composite Separators for Robust High Rate Lithium Ion Batteries
    Yuan, Botao
    Wen, Kechun
    Chen, Dongjiang
    Liu, Yuanpeng
    Dong, Yunfa
    Feng, Chao
    Han, Yupei
    Han, Jiecai
    Zhang, Yongqi
    Xia, Chuan
    Sun, Andy
    He, Weidong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (32)
  • [5] A composite anode based on intercalation and conversion mechanism for high-rate lithium-ion batteries
    Dong, Shilong
    Li, Lingke
    Ai, Wenqiang
    Zheng, Yanan
    Wang, Ruiqi
    Ji, Hongyu
    Liu, Yang
    Zu, Lei
    Lian, Huiqin
    Journal of Alloys and Compounds, 2024, 1009
  • [6] A high-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R
    Berrettoni, M
    Nalimova, V
    Marassi, R
    Scrosati, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : L64 - L67
  • [7] High-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R.
    Berrettoni, M.
    Nalimova, V.
    Marassi, R.
    Journal of the Electrochemical Society, 1996, 143 (03):
  • [8] A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries
    dos Santos-Gomez, Lucia
    Cuesta, Nuria
    Camean, Ignacio
    Garcia-Granda, S.
    Garcia, Ana B.
    Arenillas, Ana
    ELECTROCHIMICA ACTA, 2022, 426
  • [9] Characterization of composite cellulosic separators for rechargeable lithium-ion batteries
    Kuribayashi, I
    JOURNAL OF POWER SOURCES, 1996, 63 (01) : 87 - 91
  • [10] Characterization of composite cellulosic separators for rechargeable lithium-ion batteries
    Asahi Chemical Industry Co, Ltd, Tokyo, Japan
    J Power Sources, 1 (87-91):