Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores

被引:10
|
作者
Niu, Wenhui [1 ,2 ,3 ,4 ]
Fu, Yubin [1 ,2 ,3 ,4 ]
Serra, Gianluca [5 ]
Liu, Kun [2 ,3 ]
Droste, Joern [6 ,11 ]
Lee, Yeonju [7 ,8 ]
Ling, Zhitian [9 ]
Xu, Fugui
Gonzalez, Jose D. [7 ,8 ]
Lucotti, Andrea [5 ]
Rabe, Juergen P. [7 ,8 ]
Hansen, Michael Ryan [6 ]
Pisula, Wojciech [9 ,12 ]
Blom, Paul W. M. [9 ]
Palma, Carlos-Andres [7 ,8 ,10 ]
Tommasini, Matteo [5 ]
Mai, Yiyong [4 ]
Ma, Ji [1 ,2 ,3 ]
Feng, Xinliang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany
[2] Tech Univ Dresden, Ctr Adv Elect Dresden cfaed, Mommsenstr 4, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Fac Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[4] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai Key Lab Elect Insulat & Thermal Ageing, Shanghai 200240, Peoples R China
[5] Politecn Milan, Dipartimento Chim Mat & Ingn Chim G Natta, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[6] Westfal Wilhelms Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[7] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[8] Humboldt Univ, IRIS Adlershof, D-12489 Berlin, Germany
[9] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[10] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[11] Leibniz Univ Hannover, Inst Organ Chem, Schneiderberg 1B, D-30167 Hannover, Germany
[12] Lodz Univ Technol, Fac Chem, Dept Mol Phys, Zeromskiego 116, PL-90924 Lodz, Poland
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Bandgap Engineering; Graphene Nanoribbons; Porous; Precision Synthesis; In Solution; ON-SURFACE SYNTHESIS;
D O I
10.1002/anie.202305737
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the & pi;-conjugation degree and alleviate the inter-ribbon & pi;-& pi; interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Bottom-up synthesis of graphene nanoribbons
    Kintigh, Jeremy
    Miller, Glen P.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [2] GRAPHENE SYNTHESIS Nanoribbons from the bottom-up
    Hartley, C. Scott
    [J]. NATURE CHEMISTRY, 2014, 6 (02) : 91 - 92
  • [3] Bottom-Up Synthesis of Graphene Nanoribbons on Surfaces
    Fischer, Felix R.
    [J]. FROM POLYPHENYLENES TO NANOGRAPHENES AND GRAPHENE NANORIBBONS, 2017, 278 : 33 - 65
  • [4] Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons
    Vo, Timothy H.
    Shekhirev, Mikhail
    Kunkel, Donna A.
    Orange, Francois
    Guinel, Maxime J. -F.
    Enders, Axel
    Sinitskii, Alexander
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (32) : 4172 - 4174
  • [5] Bottom-Up Synthesis of Chemically Precise Graphene Nanoribbons
    Narita, Akimitsu
    Feng, Xinliang
    Muellen, Klaus
    [J]. CHEMICAL RECORD, 2015, 15 (01): : 295 - 309
  • [6] Bottom-up approach to graphene nanoribbons
    Sealy, Cordelia
    [J]. NANO TODAY, 2010, 5 (05) : 374 - 376
  • [7] Liquid-phase bottom-up synthesis of graphene nanoribbons
    Yoon, Ki-Young
    Dong, Guangbin
    [J]. MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (01) : 29 - 45
  • [8] Bottom-up synthesis of mesoscale nanomeshes of graphene nanoribbons on germanium
    Saraswat, Vivek
    Way, Austin J. J.
    Zheng, Xiaoqi
    Jacobberger, Robert M. M.
    Manzo, Sebastian
    Tiwale, Nikhil
    Dwyer, Jonathan H. H.
    Kawasaki, Jason K. K.
    Nam, Chang-Yong
    Gopalan, Padma
    Arnold, Michael S. S.
    [J]. APL MATERIALS, 2023, 11 (04)
  • [9] Bottom-Up Synthesis of Necklace-Like Graphene Nanoribbons
    Schwab, Matthias Georg
    Narita, Akimitsu
    Osella, Silvio
    Hu, Yunbin
    Maghsoumi, Ali
    Mavrinsky, Alexey
    Pisula, Wojciech
    Castiglioni, Chiara
    Tommasini, Matteo
    Beljonne, David
    Feng, Xinliang
    Muellen, Klaus
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (10) : 2134 - 2138
  • [10] Bottom-up solution synthesis of atomically precise pristine and nitrogen-doped graphene nanoribbons
    Sinitskii, Alexander
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250