Homotopy groups of cubical sets

被引:1
|
作者
Carranza, Daniel [1 ]
Kapulkin, Krzysztof [2 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD USA
[2] Univ Western Ontario, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cubical set; Homotopy groups; Loop space; FRAMES;
D O I
10.1016/j.exmath.2023.125518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study homotopy groups of cubical sets. To this end, we give four definitions of homotopy groups of a cubical set, prove that they are equivalent, and further that they agree with their topological analogues via the geometric realization functor. We also provide purely combinatorial proofs of several classical theorems, including: product preservation, commutativity of higher homotopy groups, the long exact sequence of a fibration, and Whitehead's theorem.This is a companion paper to our "Cubical setting for discrete homotopy theory, revisited" in which we apply these results to study the homotopy theory of simple graphs.(c) 2023 Elsevier GmbH. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [21] The Univalence Axiom in Cubical Sets
    Bezem, Marc
    Coquand, Thierry
    Huber, Simon
    JOURNAL OF AUTOMATED REASONING, 2019, 63 (02) : 159 - 171
  • [22] HOMOTOPY GROUPS AND TORUS HOMOTOPY GROUPS
    FOX, RH
    ANNALS OF MATHEMATICS, 1948, 49 (02) : 471 - 510
  • [23] Cubical setting for discrete homotopy theory, revisited
    Carranza, D.
    Kapulkin, K.
    COMPOSITIO MATHEMATICA, 2025, 160 (12)
  • [24] A CUBICAL LANGUAGE FOR BISHOP SETS
    Sterling, Jonathan
    Angiuli, Carlo
    Gratzer, Daniel
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01) : 43:1 - 43:80
  • [25] The Univalence Axiom in Cubical Sets
    Marc Bezem
    Thierry Coquand
    Simon Huber
    Journal of Automated Reasoning, 2019, 63 : 159 - 171
  • [26] A 2-groupoid Characterisation of the Cubical Homotopy Pushout
    K. A. Hardie
    K. H. Kamps
    P. J. Witbooi
    Applied Categorical Structures, 2004, 12 : 245 - 255
  • [27] A 2-groupoid characterisation of the cubical homotopy pushout
    Hardie, KA
    Kamps, KH
    Witbooi, PJ
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (03) : 245 - 255
  • [28] Homotopy Groups of Spheres and Lipschitz Homotopy Groups of Heisenberg Groups
    Piotr Hajłasz
    Armin Schikorra
    Jeremy T. Tyson
    Geometric and Functional Analysis, 2014, 24 : 245 - 268
  • [29] Homotopy Groups of Spheres and Lipschitz Homotopy Groups of Heisenberg Groups
    Hajlasz, Piotr
    Schikorra, Armin
    Tyson, Jeremy T.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 245 - 268
  • [30] Cubical methods in homotopy type theory and univalent foundations
    Mortberg, Anders
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, : 1 - 38