Cubical setting for discrete homotopy theory, revisited

被引:0
|
作者
Carranza, D. [1 ]
Kapulkin, K. [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, Krieger Hall 211,3400 N Charles St, Baltimore, MD 21218 USA
[2] Univ Western Ontario, Dept Math, Middlesex Coll 255C,1151 Richmond St, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
discrete homotopy theory; cubical set; reflexive graph; Kan complex; PATTERNS; ALGEBRA;
D O I
10.1112/S0010437X24007486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a functor associating a cubical set to a (simple) graph. We show that cubical sets arising in this way are Kan complexes, and that the A-groups of a graph coincide with the homotopy groups of the associated Kan complex. We use this to prove a conjecture of Babson, Barcelo, de Longueville, and Laubenbacher from 2006, and a strong version of the Hurewicz theorem in discrete homotopy theory.
引用
收藏
页数:49
相关论文
共 50 条
  • [1] Cubical structures, homotopy theory
    Antolini R.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 317 - 324
  • [2] Cubical Synthetic Homotopy Theory
    Mortberg, Anders
    Pujet, Loic
    CPP '20: PROCEEDINGS OF THE 9TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2020, : 158 - 171
  • [3] A Cubical Approach to Synthetic Homotopy Theory
    Licata, Daniel R.
    Brunerie, Guillaume
    2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, : 92 - 103
  • [4] A cubical model of homotopy type theory
    Awodey, Steve
    ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (12) : 1270 - 1294
  • [5] CANONICITY AND HOMOTOPY CANONICITY FOR CUBICAL TYPE THEORY
    Coquand, Thierry
    Huber, Simon
    Sattler, Christian
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01)
  • [6] Cubical methods in homotopy type theory and univalent foundations
    Mortberg, Anders
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2021, : 1 - 38
  • [7] CUBICAL POLYHEDRA AND HOMOTOPY
    HOLSZTYN.W
    BLASS, J
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (03): : 416 - 425
  • [8] CUBICAL POLYHEDRA AND HOMOTOPY
    BLASS, J
    HOLSZTYNSKI, W
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (02): : 131 - +
  • [9] Homotopy groups of cubical sets
    Carranza, Daniel
    Kapulkin, Krzysztof
    EXPOSITIONES MATHEMATICAE, 2023, 41 (04)
  • [10] A (Discrete) Homotopy Theory for Geometric Spaces
    Pourhaghani, Asieh
    Torabi, Hamid
    JOURNAL OF MATHEMATICS, 2023, 2023