Homotopy groups of cubical sets

被引:1
|
作者
Carranza, Daniel [1 ]
Kapulkin, Krzysztof [2 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD USA
[2] Univ Western Ontario, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cubical set; Homotopy groups; Loop space; FRAMES;
D O I
10.1016/j.exmath.2023.125518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study homotopy groups of cubical sets. To this end, we give four definitions of homotopy groups of a cubical set, prove that they are equivalent, and further that they agree with their topological analogues via the geometric realization functor. We also provide purely combinatorial proofs of several classical theorems, including: product preservation, commutativity of higher homotopy groups, the long exact sequence of a fibration, and Whitehead's theorem.This is a companion paper to our "Cubical setting for discrete homotopy theory, revisited" in which we apply these results to study the homotopy theory of simple graphs.(c) 2023 Elsevier GmbH. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [1] Homology Groups of Cubical Sets
    Husainov, Ahmet A.
    APPLIED CATEGORICAL STRUCTURES, 2019, 27 (02) : 199 - 216
  • [2] Homology Groups of Cubical Sets
    Ahmet A. Husainov
    Applied Categorical Structures, 2019, 27 : 199 - 216
  • [3] Homology Groups of Cubical Sets with Connections
    Hélène Barcelo
    Curtis Greene
    Abdul Salam Jarrah
    Volkmar Welker
    Applied Categorical Structures, 2021, 29 : 415 - 429
  • [4] Homology Groups of Cubical Sets with Connections
    Barcelo, Helene
    Greene, Curtis
    Jarrah, Abdul Salam
    Welker, Volkmar
    APPLIED CATEGORICAL STRUCTURES, 2021, 29 (03) : 415 - 429
  • [5] CUBICAL POLYHEDRA AND HOMOTOPY
    HOLSZTYN.W
    BLASS, J
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (03): : 416 - 425
  • [6] CUBICAL POLYHEDRA AND HOMOTOPY
    BLASS, J
    HOLSZTYNSKI, W
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (02): : 131 - +
  • [7] Cubical structures, homotopy theory
    Antolini R.
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 317 - 324
  • [8] Cubical Synthetic Homotopy Theory
    Mortberg, Anders
    Pujet, Loic
    CPP '20: PROCEEDINGS OF THE 9TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2020, : 158 - 171
  • [9] CUBICAL POLYHEDRA AND HOMOTOPY .3.
    BLASS, J
    HOLSZTYN.W
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 53 (3-4): : 275 - 279
  • [10] CUBICAL POLYHEDRA AND HOMOTOPY .4.
    HOLSZTYN.W
    BLASS, J
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 53 (05): : 402 - 409