Cubical setting for discrete homotopy theory, revisited

被引:0
|
作者
Carranza, D. [1 ]
Kapulkin, K. [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, Krieger Hall 211,3400 N Charles St, Baltimore, MD 21218 USA
[2] Univ Western Ontario, Dept Math, Middlesex Coll 255C,1151 Richmond St, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
discrete homotopy theory; cubical set; reflexive graph; Kan complex; PATTERNS; ALGEBRA;
D O I
10.1112/S0010437X24007486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a functor associating a cubical set to a (simple) graph. We show that cubical sets arising in this way are Kan complexes, and that the A-groups of a graph coincide with the homotopy groups of the associated Kan complex. We use this to prove a conjecture of Babson, Barcelo, de Longueville, and Laubenbacher from 2006, and a strong version of the Hurewicz theorem in discrete homotopy theory.
引用
收藏
页数:49
相关论文
共 50 条
  • [31] Canonicity for Cubical Type Theory
    Huber, Simon
    JOURNAL OF AUTOMATED REASONING, 2019, 63 (02) : 173 - 210
  • [32] HOMOTOPY THEORY OF HOMOTOPY ALGEBRAS
    Vallette, Bruno
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (02) : 683 - 738
  • [33] Efficient Zero-Knowledge Arguments in the Discrete Log Setting, Revisited
    Hoffmann, Max
    Klooss, Michael
    Rupp, Andy
    PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, : 2093 - 2110
  • [35] ON THE VANISHING OF DISCRETE SINGULAR CUBICAL HOMOLOGY FOR GRAPHS
    Barcelo, Helene
    Greene, Curtis
    Jarrah, Abdul Salam
    Welker, Volkmar
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) : 35 - 54
  • [36] Canonicity for Cubical Type Theory
    Simon Huber
    Journal of Automated Reasoning, 2019, 63 : 173 - 210
  • [37] Applications to discrete Morse theory: The collapsibility of CAT(0) cubical complexes of dimension 2 and 3
    Lazar, Ioana-Claudia
    CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (02) : 225 - 237
  • [38] Normalization for Cubical Type Theory
    Sterling, Jonathan
    Angiuli, Carlo
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [39] Homotopy Theory
    Banagl, Markus
    INTERSECTION SPACES, SPATIAL HOMOLOGY TRUNCATION, AND STRING THEORY, 2010, 1997 : 1 - +
  • [40] Cubical Computational Type Theory and RedPRL
    Hou, Kuen-Bang
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2018, (274):