Cavity-enhanced excitation of a quantum dot in the picosecond regime

被引:2
|
作者
Javadi, Alisa [1 ]
Tomm, Natasha [1 ]
Antoniadis, Nadia O. [1 ]
Brash, Alistair J. [2 ]
Schott, Rudiger [3 ]
Valentin, Sascha R. [3 ]
Wieck, Andreas D. [3 ]
Ludwig, Arne [3 ]
Warburton, Richard J. [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, England
[3] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 09期
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
single-photon source; quantum dot; microcavity; quantum optics; exciton-phonon coupling; coherent control; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1088/1367-2630/acf33b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A major challenge in generating single photons with a single emitter is to excite the emitter while avoiding laser leakage into the collection path. Ideally, any scheme to suppress this leakage should not result in a loss in the efficiency of the single-photon source. Here, we investigate a scheme in which a single emitter, a semiconductor quantum dot, is embedded in a microcavity. The scheme exploits the splitting of the cavity mode into two orthogonally-polarised modes: one mode is used for excitation, the other for collection. By linking the experiment to theory, we show that the best population inversion is achieved with a laser pulse detuned from the quantum emitter. The Rabi oscillations exhibit an unusual dependence on pulse power. Our theory describes them quantitatively, enabling us to determine the absolute population inversion. By comparing the experimental results with our theoretical model, we determine a population inversion of 98%-5%+1% for optimal laser detuning. The Rabi oscillations depend on the sign of the laser-pulse detuning, a phenomenon arising from the non-trivial effect of phonons on the exciton dynamics. The exciton-phonon interaction is included in the theory and gives excellent agreement with all the experimental results.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Frequency Tunable, Cavity-Enhanced Single Erbium Quantum Emitter in the Telecom Band
    Yu, Yong
    Oser, Dorian
    Da Prato, Gaia
    Urbinati, Emanuele
    Avila, Javier Carrasco
    Zhang, Yu
    Remy, Patrick
    Marzban, Sara
    Groeblacher, Simon
    Tittel, Wolfgang
    PHYSICAL REVIEW LETTERS, 2023, 131 (17)
  • [42] Cavity-enhanced light scattering in optical lattices to probe atomic quantum statistics
    Mekhov, Igor B.
    Maschler, Christoph
    Ritsch, Helmut
    PHYSICAL REVIEW LETTERS, 2007, 98 (10)
  • [43] Cavity-Enhanced Third Harmonic Generation
    YANG Xiao-Xue~1 WU Ying~(1
    Communications in Theoretical Physics, 2005, 43 (02) : 318 - 320
  • [44] Broadband cavity-enhanced ultrafast spectroscopy
    Silfies, Myles C.
    Kowzan, Grzegorz
    Lewis, Neomi
    Allison, Thomas K.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (16) : 9743 - 9752
  • [45] Towards a realistic model for cavity-enhanced atomic frequency comb quantum memories
    Taherizadegan, Shahrzad
    Davidson, Jacob H.
    Kumar, Sourabh
    Oblak, Daniel
    Simon, Christoph
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [46] RESONANT CAVITY-ENHANCED (RCE) PHOTODETECTORS
    KISHINO, K
    UNLU, MS
    CHYI, JI
    REED, J
    ARSENAULT, L
    MORKOC, H
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (08) : 2025 - 2034
  • [47] Cavity-enhanced third harmonic generation
    Yang, XX
    Wu, Y
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (02) : 318 - 320
  • [48] Cavity-enhanced storage-preparing for high-efficiency quantum memories
    Sabooni, M.
    Kometa, S. Tornibue
    Thuresson, A.
    Kroll, S.
    Rippe, L.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [49] Topologically protected spatial-phase mismatching for cavity-enhanced quantum memories
    Li, Xia-Xia
    Wang, Jia-Xin
    Chen, Yu -Hui
    Zhang, Xiangdong
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [50] High-performance cavity-enhanced quantum memory with warm atomic cell
    Ma, Lixia
    Lei, Xing
    Yan, Jieli
    Li, Ruiyang
    Chai, Ting
    Yan, Zhihui
    Jia, Xiaojun
    Xie, Changde
    Peng, Kunchi
    NATURE COMMUNICATIONS, 2022, 13 (01)