Cavity-enhanced excitation of a quantum dot in the picosecond regime

被引:2
|
作者
Javadi, Alisa [1 ]
Tomm, Natasha [1 ]
Antoniadis, Nadia O. [1 ]
Brash, Alistair J. [2 ]
Schott, Rudiger [3 ]
Valentin, Sascha R. [3 ]
Wieck, Andreas D. [3 ]
Ludwig, Arne [3 ]
Warburton, Richard J. [1 ]
机构
[1] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[2] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, England
[3] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 09期
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
single-photon source; quantum dot; microcavity; quantum optics; exciton-phonon coupling; coherent control; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1088/1367-2630/acf33b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A major challenge in generating single photons with a single emitter is to excite the emitter while avoiding laser leakage into the collection path. Ideally, any scheme to suppress this leakage should not result in a loss in the efficiency of the single-photon source. Here, we investigate a scheme in which a single emitter, a semiconductor quantum dot, is embedded in a microcavity. The scheme exploits the splitting of the cavity mode into two orthogonally-polarised modes: one mode is used for excitation, the other for collection. By linking the experiment to theory, we show that the best population inversion is achieved with a laser pulse detuned from the quantum emitter. The Rabi oscillations exhibit an unusual dependence on pulse power. Our theory describes them quantitatively, enabling us to determine the absolute population inversion. By comparing the experimental results with our theoretical model, we determine a population inversion of 98%-5%+1% for optimal laser detuning. The Rabi oscillations depend on the sign of the laser-pulse detuning, a phenomenon arising from the non-trivial effect of phonons on the exciton dynamics. The exciton-phonon interaction is included in the theory and gives excellent agreement with all the experimental results.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Resonant cavity-enhanced quantum dot field-effect transistor as a single-photon detector
    Dong Yu
    Wang Guang-Long
    Wang Hong-Pei
    Ni Hai-Qiao
    Chen Jian-Hui
    Gao Feng-Qi
    Qiao Zhong-Tao
    Yang Xiao-Hong
    Niu Zhi-Chuan
    CHINESE PHYSICS B, 2014, 23 (10)
  • [22] Resonant Cavity-Enhanced Quantum-Dot Infrared Photodetectors with Guided-Mode Resonance Reflector
    Wang, Chi-Cheng
    Lin, Sheng-Di
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2013,
  • [23] Cavity-enhanced graphene
    Ed Gerstner
    Nature Physics, 2012, 8 (8) : 580 - 580
  • [24] Single quantum dot photocurrent spectroscopy in the cavity quantum electrodynamics regime
    Gold, P.
    Gschrey, M.
    Schneider, C.
    Hoefling, S.
    Forchel, A.
    Kamp, M.
    Reitzenstein, S.
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [25] Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime
    Imperatore, Mario V.
    Asbury, John B.
    Giebink, Noel C.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (19):
  • [26] Cavity-Enhanced Transport of Excitons
    Schachenmayer, Johannes
    Genes, Claudiu
    Tignone, Edoardo
    Pupillo, Guido
    PHYSICAL REVIEW LETTERS, 2015, 114 (19)
  • [27] Cavity-enhanced Kondo effect
    Mochida, Jun
    Ashida, Yuto
    PHYSICAL REVIEW B, 2024, 110 (03)
  • [28] Cavity-Enhanced Transport of Charge
    Hagenmueller, David
    Schachenmayer, Johannes
    Schutz, Stefan
    Genes, Claudiu
    Pupillo, Guido
    PHYSICAL REVIEW LETTERS, 2017, 119 (22)
  • [29] Cavity-enhanced Rayleigh scattering
    Motsch, Michael
    Zeppenfeld, Martin
    Pinkse, Pepijn W. H.
    Rempe, Gerhard
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [30] Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
    Ashida, Yuto
    Imamoglu, Atac
    Faist, Jerome
    Jaksch, Dieter
    Cavalleri, Andrea
    Demler, Eugene
    PHYSICAL REVIEW X, 2020, 10 (04):