SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields

被引:38
|
作者
Mirzaei, Ashkan [1 ,2 ]
Aumentado-Armstrong, Tristan [1 ,2 ,4 ]
Derpanis, Konstantinos G. [1 ,3 ,4 ]
Kelly, Jonathan [2 ]
Brubaker, Marcus A. [1 ,3 ,4 ]
Gilitschenski, Igor [2 ]
Levinshtein, Alex [1 ]
机构
[1] Samsung AI Ctr Toronto, Toronto, ON, Canada
[2] Univ Toronto, Toronto, ON, Canada
[3] York Univ, N York, ON, Canada
[4] Vector Inst AI, Toronto, ON, Canada
关键词
D O I
10.1109/CVPR52729.2023.01980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Radiance Fields (NeRFs) have emerged as a popular approach for novel view synthesis. While NeRFs are quickly being adapted for a wider set of applications, intuitively editing NeRF scenes is still an open challenge. One important editing task is the removal of unwanted objects from a 3D scene, such that the replaced region is visually plausible and consistent with its context. We refer to this task as 3D inpainting. In 3D, solutions must be both consistent across multiple views and geometrically valid. In this paper, we propose a novel 3D inpainting method that addresses these challenges. Given a small set of posed images and sparse annotations in a single input image, our framework first rapidly obtains a 3D segmentation mask for a target object. Using the mask, a perceptual optimization-based approach is then introduced that leverages learned 2D image inpainters, distilling their information into 3D space, while ensuring view consistency. We also address the lack of a diverse benchmark for evaluating 3D scene inpainting methods by introducing a dataset comprised of challenging real-world scenes. In particular, our dataset contains views of the same scene with and without a target object, enabling more principled benchmarking of the 3D inpainting task. We first demonstrate the superiority of our approach on multiview segmentation, comparing to NeRF-based methods and 2D segmentation approaches. We then evaluate on the task of 3D inpainting, establishing state-of-the-art performance against other NeRF manipulation algorithms, as well as a strong 2D image inpainter baseline.
引用
收藏
页码:20669 / 20679
页数:11
相关论文
共 50 条
  • [21] NeRF-QA: Neural Radiance Fields Quality Assessment Database
    Martin, Pedro
    Rodrigues, Antonio
    Ascenso, Joao
    Queluz, Maria Paula
    2023 15TH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE, QOMEX, 2023, : 107 - 110
  • [22] Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
    Kulhanek, Jonas
    Sattler, Torsten
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18412 - 18423
  • [23] CaSE-NeRF: Camera Settings Editing of Neural Radiance Fields
    Sun, Ciliang
    Li, Yuqi
    Li, Jiabao
    Wang, Chong
    Dai, Xinmiao
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 95 - 107
  • [24] NeRF-DA: Neural Radiance Fields Deblurring With Active Learning
    Hong, Sejun
    Kim, Eunwoo
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 261 - 265
  • [25] BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
    Wang, Peng
    Zhao, Lingzhe
    Ma, Ruijie
    Liu, Peidong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4170 - 4179
  • [26] FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality
    Deng, Nianchen
    He, Zhenyi
    Ye, Jiannan
    Duinkharjav, Budmonde
    Chakravarthula, Praneeth
    Yang, Xubo
    Sun, Qi
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (11) : 3854 - 3864
  • [27] Point-NeRF: Point-based Neural Radiance Fields
    Xu, Qiangeng
    Xu, Zexiang
    Philip, Julien
    Bi, Sai
    Shu, Zhixin
    Sunkavalli, Kalyan
    Neumann, Ulrich
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5428 - 5438
  • [28] NeRF-Art: Text-Driven Neural Radiance Fields Stylization
    Wang, Can
    Jiang, Ruixiang
    Chai, Menglei
    He, Mingming
    Chen, Dongdong
    Liao, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 4983 - 4996
  • [29] NeRF-SR: High Quality Neural Radiance Fields using Supersampling
    Wang, Chen
    Wu, Xian
    Guo, Yuan-Chen
    Zhang, Song-Hai
    Tai, Yu-Wing
    Hu, Shi-Min
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6445 - 6454
  • [30] Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields
    Lin, Youtian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3504 - 3512