Point-NeRF: Point-based Neural Radiance Fields

被引:129
|
作者
Xu, Qiangeng [1 ,2 ]
Xu, Zexiang [2 ]
Philip, Julien [2 ]
Bi, Sai [2 ]
Shu, Zhixin [2 ]
Sunkavalli, Kalyan [2 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90089 USA
[2] Adobe Res, San Jose, CA USA
关键词
D O I
10.1109/CVPR52688.2022.00536
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Volumetric neural rendering methods like NeRF [34] generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30x faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism.
引用
收藏
页码:5428 / 5438
页数:11
相关论文
共 50 条
  • [1] SG-NeRF: Semantic-guided Point-based Neural Radiance Fields
    Qu, Yansong
    Wang, Yuze
    Qi, Yue
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 570 - 575
  • [2] PNeRFLoc: Visual Localization with Point-Based Neural Radiance Fields
    Zhao, Boming
    Yang, Luwei
    Mao, Mao
    Bao, Hujun
    Cui, Zhaopeng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7450 - 7459
  • [3] Differentiable Point-Based Radiance Fields for Efficient View Synthesis
    Zhang, Qiang
    Baek, Seung-Hwan
    Rusinkiewicz, Szymon
    Heide, Felix
    [J]. PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [4] Point-DynRF: Point-based Dynamic Radiance Fields from a Monocular Video
    Park, Byeongjun
    Kim, Changick
    [J]. arXiv, 2023,
  • [5] NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance Fields
    Zhang, Junge
    Zhang, Feihu
    Kuang, Shaochen
    Zhang, Li
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7178 - 7186
  • [6] Evaluating the Point Cloud of Individual Trees Generated from Images Based on Neural Radiance Fields (NeRF) Method
    Huang, Hongyu
    Tian, Guoji
    Chen, Chongcheng
    [J]. REMOTE SENSING, 2024, 16 (06)
  • [7] CloudLoc-NeRF: Point-cloud Assisted Volume Location for Neural Radiance Fields
    Cao, Jingyi
    You, Yanan
    Gao, Songzhi
    Liu, Jun
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7007 - 7010
  • [8] RIP-NeRF: Learning Rotation-Invariant Point-based Neural Radiance Field for Fine-grained Editing and Compositing
    Wang, Yuze
    Wang, Junyi
    Qu, Yansong
    Qi, Yue
    [J]. PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 125 - 134
  • [9] Points2NeRF: Generating Neural Radiance Fields from 3D point cloud
    Zimny, Dominik
    Waczynska, Joanna
    Trzcinski, Tomasz
    Spurek, Przemyslaw
    [J]. PATTERN RECOGNITION LETTERS, 2024, 185 : 8 - 14
  • [10] nerf2nerf: Pairwise Registration of Neural Radiance Fields
    Goli, Lily
    Rebain, Daniel
    Sabour, Sara
    Garg, Animesh
    Tagliasacchi, Andrea
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9354 - 9361