Machine learning predictions of diffusion in bulk and confined ionic liquids using simple descriptors

被引:3
|
作者
Bobbitt, N. Scott [1 ]
Allers, Joshua P. [1 ]
Harvey, Jacob A. [1 ]
Poe, Derrick [2 ]
Wemhoner, Jordyn D. [1 ]
Keth, Jane [1 ]
Greathouse, Jeffery A. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Argonne Natl Lab, Lemont, IL 60439 USA
来源
关键词
GROUP-CONTRIBUTION QSPRS; MOLECULAR-DYNAMICS; SELF-DIFFUSION; INITIAL CONFIGURATIONS; EXTENSIVE DATABASES; MELTING-POINTS; ZAGREB INDEX; SMILES; SIMULATION; GENERATION;
D O I
10.1039/d3me00033h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids have many intriguing properties and widespread applications such as separations and energy storage. However, ionic liquids are complex fluids and predicting their behavior is difficult, particularly in confined environments. We introduce fast and computationally efficient machine learning (ML) models that can predict diffusion coefficients and ionic conductivity of bulk and nanoconfined ionic liquids over a wide temperature range (350-500 K). The ML models are trained on molecular dynamics simulation data for 29 unique ionic liquids as bulk fluids and confined in graphite slit pores. This model is based on simple physical descriptors of the cations and anions such as molecular weight and surface area. We also demonstrate that accurate results can be obtained using only descriptors derived from SMILES (simplified molecular-input line-entry system) codes for the ions with minimal computational effort. This offers a fast and efficient method for estimating diffusion and conductivity of nanoconfined ionic liquids at various temperatures without the need for expensive molecular dynamics simulations.
引用
收藏
页码:1257 / 1274
页数:19
相关论文
共 50 条
  • [31] Prediction of The Ionic Conductivity and Viscosity of Ionic Liquids by QSPR Using Descriptors of Group Contribution Type
    Matsuda, Hiroyuki
    Yamamoto, Hiroshi
    Kurihara, Kiyofumi
    Tochigi, Katsumi
    [J]. JOURNAL OF COMPUTER AIDED CHEMISTRY, 2007, 8 : 114 - 127
  • [32] Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
    Zhu, De-Xin
    Pan, Kun-Ming
    Wu, Yuan
    Zhou, Xiao-Ye
    Li, Xiang-Yue
    Ren, Yong-Peng
    Shi, Sai-Ru
    Yu, Hua
    Wei, Shi-Zhong
    Wu, Hong-Hui
    Yang, Xu-Sheng
    [J]. RARE METALS, 2023, 42 (07) : 2396 - 2405
  • [33] Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
    De-Xin Zhu
    Kun-Ming Pan
    Yuan Wu
    Xiao-Ye Zhou
    Xiang-Yue Li
    Yong-Peng Ren
    Sai-Ru Shi
    Hua Yu
    Shi-Zhong Wei
    Hong-Hui Wu
    Xu-Sheng Yang
    [J]. Rare Metals, 2023, 42 (07) : 2396 - 2405
  • [34] Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
    De-Xin Zhu
    Kun-Ming Pan
    Yuan Wu
    Xiao-Ye Zhou
    Xiang-Yue Li
    Yong-Peng Ren
    Sai-Ru Shi
    Hua Yu
    Shi-Zhong Wei
    Hong-Hui Wu
    Xu-Sheng Yang
    [J]. Rare Metals, 2023, 42 : 2396 - 2405
  • [35] Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids
    Goebel, Ronald
    Hesemann, Peter
    Weber, Jens
    Moeller, Eleonore
    Friedrich, Alwin
    Beuermann, Sabine
    Taubert, Andreas
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (19) : 3653 - 3662
  • [36] Solvation of Al3+ cations in bulk and confined protic ionic liquids: a computational study
    Goemez-Gonzalez, Victor
    Docampo-Alvarez, Borja
    Montes-Campos, Hadrian
    Carlos Otero, Juan
    Lopez Lago, Elena
    Cabeza, Oscar
    Gallego, Luis J.
    Varela, Luis M.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (28) : 19071 - 19081
  • [37] A quantitative prediction of the viscosity of ionic liquids using Sσ-profile molecular descriptors
    Zhao, Yongsheng
    Huang, Ying
    Zhang, Xiangping
    Zhang, Suojiang
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (05) : 3761 - 3767
  • [38] Estimation of Heat Capacity of Ionic Liquids Using Sσ-profile Molecular Descriptors
    Zhao, Yongsheng
    Zeng, Shaojuan
    Huang, Ying
    Afzal, Raja Muhammad
    Zhang, Xiangping
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (51) : 12987 - 12992
  • [39] Cocrystal Prediction Using Machine Learning Models and Descriptors
    Mswahili, Medard Edmund
    Lee, Min-Jeong
    Martin, Gati Lother
    Kim, Junghyun
    Kim, Paul
    Choi, Guang J.
    Jeong, Young-Seob
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 12
  • [40] Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors
    Kang, Xuejing
    Chen, Zhongbing
    Zhao, Yongsheng
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2020, 397