A quantitative prediction of the viscosity of ionic liquids using Sσ-profile molecular descriptors

被引:89
|
作者
Zhao, Yongsheng [1 ,2 ]
Huang, Ying [1 ,2 ]
Zhang, Xiangping [1 ]
Zhang, Suojiang [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Key Lab Green Proc & Engn, State Key Lab Multiphase Complex Syst,Beijing Key, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem & Chem Engn, Beijing 100049, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金; 北京市自然科学基金;
关键词
ARTIFICIAL NEURAL-NETWORK; MELTING-POINTS; COSMO-RS; PHYSICAL-PROPERTIES; SURFACE TENSIONS; QSPR CORRELATION; TEMPERATURE; DENSITIES; TRANSPORT; DYNAMICS;
D O I
10.1039/c4cp04712e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, two novel QSPR models have been developed to predict the viscosity of ionic liquids (ILs) using multiple linear regression (MLR) and support vector machine (SVM) algorithms based on Conductorlike Screening Model for Real Solvents (COSMO-RS) molecular descriptors (S sigma-profile). A total data set of 1502 experimental viscosity data points under a wide range of temperatures and pressures for 89 ILs, is employed to train and verify the models. The Average Absolute Relative Deviation (AARD) values of the total data set of the MLR and SVM are 10.68% and 6.58%, respectively. The results show that both the MLR and SVM models can predict the viscosity of ILs, and the performance of the nonlinear model developed using the SVM is superior to the linear model (MLR). Furthermore, the derived models also can throw some light onto structural characteristics that are related to the viscosity of ILs.
引用
收藏
页码:3761 / 3767
页数:7
相关论文
共 50 条
  • [1] A quantitative prediction of the viscosity of amine based DESs using Sσ-profile molecular descriptors
    Benguerba, Yacine
    Alnashef, Inas M.
    Erto, Alessandro
    Balsamo, Marco
    Ernst, Barbara
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2019, 1184 : 357 - 363
  • [2] Estimation of Heat Capacity of Ionic Liquids Using Sσ-profile Molecular Descriptors
    Zhao, Yongsheng
    Zeng, Shaojuan
    Huang, Ying
    Afzal, Raja Muhammad
    Zhang, Xiangping
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (51) : 12987 - 12992
  • [3] Prediction of The Ionic Conductivity and Viscosity of Ionic Liquids by QSPR Using Descriptors of Group Contribution Type
    Matsuda, Hiroyuki
    Yamamoto, Hiroshi
    Kurihara, Kiyofumi
    Tochigi, Katsumi
    [J]. JOURNAL OF COMPUTER AIDED CHEMISTRY, 2007, 8 : 114 - 127
  • [4] Quantitative prediction of lipase reaction in ionic liquids by QSAR using COSMO-RS molecular descriptors
    Mai, Ngoc Lan
    Koo, Yoon-Mo
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2014, 87 : 33 - 40
  • [5] Prediction of Henry's law constant of CO2 in ionic liquids based on SEP and Sσ-profile molecular descriptors
    Kang, Xuejing
    Liu, Chunjiang
    Zeng, Shaojuan
    Zhao, Zhijun
    Qian, Jianguo
    Zhao, Yongsheng
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2018, 262 : 139 - 147
  • [6] Predicting H2S solubility in ionic liquids by the quantitative structure-property relationship method using Sσ-profile molecular descriptors
    Zhao, Yongsheng
    Gao, Jubao
    Huang, Ying
    Afzal, Raja Muhammad
    Zhang, Xiangping
    Zhang, Suojiang
    [J]. RSC ADVANCES, 2016, 6 (74): : 70405 - 70413
  • [7] Novel molecular descriptors for prediction of H2S solubility in ionic liquids
    Kang, Xuejing
    Qian, Jianguo
    Deng, Jing
    Latif, Ullah
    Zhao, Yongsheng
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2018, 265 : 756 - 764
  • [8] Prediction of cellulose dissolution in ionic liquids using molecular descriptors based QSAR model
    Ngoc Lan Mai
    Kim, Chan Kyung
    Park, Byungho
    Park, Heon-Jin
    Lee, Sang Huyn
    Koo, Yoon-Mo
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2016, 215 : 541 - 548
  • [9] Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors
    Martin, Shawn
    Pratt, Harry D., III
    Anderson, Travis M.
    [J]. MOLECULAR INFORMATICS, 2017, 36 (07)
  • [10] Viscosity prediction of ionic liquids using NLR and SVM approaches
    Boualem, Affaf Djihed
    Argoub, Kadda
    Benkouider, Ali Mustapha
    Yahiaoui, Ahmed
    Toubal, Khaled
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 368