Latest Advances in Manufacturing and Machine Learning of Bulk Metallic Glasses

被引:3
|
作者
Graeve, Olivia A. [1 ]
Garcia-Vazquez, Mireya S. [2 ]
Ramirez-Acosta, Alejandro A. [2 ]
Cadieux, Zachary [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr MC 0411, La Jolla, CA 92093 USA
[2] Inst Politecn Nacl, Ctr Invest & Desarrollo Tecnol Digital, Ave Inst Politecn Nacl 1310, Tijuana 22435, Baja California, Mexico
基金
美国国家科学基金会;
关键词
amorphous metal; artificial intelligence; machine learning; manufacturing; processing; THERMAL SPRAY COATINGS; MEAN-SQUARE ERROR; STATE-OF-ART; TEMPERATURE-TRANSFORMATION DIAGRAM; CO AMORPHOUS ALLOY; POWDER BED FUSION; FORMING ABILITY; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; IN-SITU;
D O I
10.1002/adem.202201493
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this review, two interrelated areas are focused on for the development of novel amorphous metallic alloys, namely, materials processing and machine learning techniques for the design of new alloy compositions. Findings, barriers, and opportunities are described, targeting powder production and sintering, additive manufacturing, and postprocessing techniques, followed by the latest developments in artificial intelligence algorithms for both the design of new alloys and for alloy classification tasks.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] UNDERSTANDING BULK METALLIC GLASSES
    不详
    [J]. ADVANCED MATERIALS & PROCESSES, 2021, 179 (04): : 8 - 9
  • [42] Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
    Ghorbani, Alireza
    Askari, Amirhossein
    Malekan, Mehdi
    Nili-Ahmadabadi, Mahmoud
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [43] Bulk metallic glasses - Introduction
    Yavari, AR
    Ochin, P
    [J]. ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2002, 27 (05): : 1 - 2
  • [44] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Long, Tao
    Long, Zhilin
    Peng, Zheng
    [J]. JOURNAL OF MATERIALS SCIENCE, 2023, 58 (21) : 8833 - 8844
  • [45] Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
    Alireza Ghorbani
    Amirhossein Askari
    Mehdi Malekan
    Mahmoud Nili-Ahmadabadi
    [J]. Scientific Reports, 12
  • [46] Engineering of Novel Fe-Based Bulk Metallic Glasses Using a Machine Learning-Based Approach
    Tzu-Chia Chen
    Rajiman Rajiman
    Marischa Elveny
    John William Grimaldo Guerrero
    Adedoyin Isola Lawal
    Ngakan Ketut Acwin Dwijendra
    Aravindhan Surendar
    Svetlana Dmitrievna Danshina
    Yu Zhu
    [J]. Arabian Journal for Science and Engineering, 2021, 46 : 12417 - 12425
  • [47] Properties of Bulk Metallic Glasses
    Louzguine-Luzgin, D. V.
    Polkin, V. I.
    [J]. RUSSIAN JOURNAL OF NON-FERROUS METALS, 2017, 58 (01) : 80 - 92
  • [48] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Tao Long
    Zhilin Long
    Zheng Peng
    [J]. Journal of Materials Science, 2023, 58 : 8833 - 8844
  • [49] Machine learning modeling for the prediction of plastic properties in metallic glasses
    Nicolás Amigo
    Simón Palominos
    Felipe J. Valencia
    [J]. Scientific Reports, 13
  • [50] Accelerated design of multicomponent metallic glasses using machine learning
    Anurag Bajpai
    Jatin Bhatt
    N. P. Gurao
    Krishanu Biswas
    [J]. Journal of Materials Research, 2022, 37 : 2428 - 2445