Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning

被引:0
|
作者
Tao Long
Zhilin Long
Zheng Peng
机构
[1] Xiangtan University,School of Mechanical Engineering and Mechanics
[2] Xiangtan University,School of Civil Engineering
[3] Xiangtan University,School of Mathematics and Computational Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The prediction accuracy of current mainstream machine learning (ML) models depends on regulating many hyperparameters. In this paper, a deep forest (DF) model with a few hyperparameters and a non-excessive dependence on super parameter regulation was applied to the prediction of glass-forming ability (GFA) of bulk metallic glasses (BMGs). Compared with these of the mainstream ML models, including Support Vector Regression (SVR), random forest (RF), gradient boosted decision trees (GBDT), k-nearest neighbor (KNN), and eXtreme gradient boosting (XGBoost), the tenfold cross-validation shows that the determination coefficient (R2) of our suggested DF model is improved by 10.4%–74.2%. Moreover, the parameter Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} obtained by the SHapley Additive exPlanations (SHAP) method analysis can be used to guide the design and development of BMGs. Finally, a design and development of scheme process for BMGs that meets the expected requirements is given via parameter Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} and the constructed DF model.
引用
收藏
页码:8833 / 8844
页数:11
相关论文
共 50 条
  • [1] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Long, Tao
    Long, Zhilin
    Peng, Zheng
    [J]. JOURNAL OF MATERIALS SCIENCE, 2023, 58 (21) : 8833 - 8844
  • [2] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [3] Identifying key features for predicting glass-forming ability of bulk metallic glasses via interpretable machine learning
    Zeng, Yangchuan
    Tian, Zean
    Zheng, Quan
    Bu, Anguo
    Xie, Quan
    [J]. JOURNAL OF MATERIALS SCIENCE, 2024, 59 (19) : 8318 - 8337
  • [4] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Jie Xiong
    Tong-Yi Zhang
    San-Qiang Shi
    [J]. MRS Communications, 2019, 9 : 576 - 585
  • [5] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Xiong, Jie
    Zhang, Tong-Yi
    Shi, San-Qiang
    [J]. MRS COMMUNICATIONS, 2019, 9 (02) : 576 - 585
  • [6] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    Reddy, G. Jaideep
    Kandavalli, Manjunadh
    Saboo, Tanay
    Rao, A. K. Prasada
    [J]. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (04) : 610 - 626
  • [7] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    G. Jaideep Reddy
    Manjunadh Kandavalli
    Tanay Saboo
    A. K. Prasada Rao
    [J]. Integrating Materials and Manufacturing Innovation, 2021, 10 : 610 - 626
  • [8] Notes on the glass-forming ability of bulk metallic glasses
    Liu, Jianbo
    [J]. PHYSICS TODAY, 2014, 67 (02) : 10 - 11
  • [9] Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    He, Yazhou
    Su, Hang
    [J]. PROCESSES, 2023, 11 (09)
  • [10] Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
    Alireza Ghorbani
    Amirhossein Askari
    Mehdi Malekan
    Mahmoud Nili-Ahmadabadi
    [J]. Scientific Reports, 12