Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning

被引:0
|
作者
Tao Long
Zhilin Long
Zheng Peng
机构
[1] Xiangtan University,School of Mechanical Engineering and Mechanics
[2] Xiangtan University,School of Civil Engineering
[3] Xiangtan University,School of Mathematics and Computational Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The prediction accuracy of current mainstream machine learning (ML) models depends on regulating many hyperparameters. In this paper, a deep forest (DF) model with a few hyperparameters and a non-excessive dependence on super parameter regulation was applied to the prediction of glass-forming ability (GFA) of bulk metallic glasses (BMGs). Compared with these of the mainstream ML models, including Support Vector Regression (SVR), random forest (RF), gradient boosted decision trees (GBDT), k-nearest neighbor (KNN), and eXtreme gradient boosting (XGBoost), the tenfold cross-validation shows that the determination coefficient (R2) of our suggested DF model is improved by 10.4%–74.2%. Moreover, the parameter Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} obtained by the SHapley Additive exPlanations (SHAP) method analysis can be used to guide the design and development of BMGs. Finally, a design and development of scheme process for BMGs that meets the expected requirements is given via parameter Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} and the constructed DF model.
引用
下载
收藏
页码:8833 / 8844
页数:11
相关论文
共 50 条
  • [41] Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability
    Sun, Y. T.
    Bai, H. Y.
    Li, M. Z.
    Wang, W. H.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14): : 3434 - 3439
  • [42] Prediction of glass-forming ability of metallic liquids
    Bian, Xiufang
    Guo, Jing
    Lv, Xiaoqian
    Qin, Xubo
    Wang, Caidong
    APPLIED PHYSICS LETTERS, 2007, 91 (22)
  • [43] PREDICTION OF GLASS-FORMING ABILITY FOR METALLIC SYSTEMS
    DONALD, IW
    DAVIES, HA
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1978, 30 (01) : 77 - 85
  • [44] Modeling glass-forming ability of bulk metallic glasses using computational intelligent techniques
    Majid, Abdul
    Ahsan, Syed Bilal
    Tariq, Naeem ul Haq
    APPLIED SOFT COMPUTING, 2015, 28 : 569 - 578
  • [45] A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses
    Zhilin Long
    Wei Liu
    Ming Zhong
    Yun Zhang
    Mingshengzi Zhao
    Guangkai Liao
    Zhuo Chen
    Journal of Thermal Analysis and Calorimetry, 2018, 132 : 1645 - 1660
  • [46] Glass-forming ability and crystallization behavior in high-density bulk metallic glasses
    Kecskes, LJ
    Trevino, SF
    Woodman, RH
    SUPERCOOLED LIQUIDS, GLASS TRANSITION AND BULK METALLIC GLASSES, 2003, 754 : 377 - 383
  • [48] Dilatometric measurements and glass-forming ability in Pr-based bulk metallic glasses
    Meng, Q. G.
    Zhang, S. G.
    Li, J. G.
    Bian, X. F.
    SCRIPTA MATERIALIA, 2006, 55 (06) : 517 - 520
  • [49] Inhomogeneous structure and glass-forming ability in Zr-based bulk metallic glasses
    Sun, Yong Li
    Qu, Dong Dong
    Sun, Ya Juan
    Liss, K. -D.
    Shen, Jun
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (01) : 39 - 45
  • [50] A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses
    Long, Zhilin
    Liu, Wei
    Zhong, Ming
    Zhang, Yun
    Zhao, Mingshengzi
    Liao, Guangkai
    Chen, Zhuo
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 132 (03) : 1645 - 1660