The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme

被引:1
|
作者
Bozorgnia, Farid [1 ]
Bungert, Leon [2 ]
Tenbrinck, Daniel [3 ]
机构
[1] Inst Super Tecn, Dept Math, Lisbon, Portugal
[2] Univ Wurzburg, Inst Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, Erlangen, Germany
基金
欧盟地平线“2020”;
关键词
Infinity Laplacian operator; Infinity ground states; Nonlinear Eigenvalue problems; Monotone schemes; LIPSCHITZ EXTENSIONS; NEWTON METHODS; POWER METHOD; EQUATIONS; GRAPHS; IMAGE;
D O I
10.1007/s10915-023-02425-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN
    Marano, Salvatore A.
    Motreanu, Dumitru
    Puglisi, Daniele
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (02) : 277 - 291
  • [42] A NONLINEAR EIGENVALUE PROBLEM FOR THE PERIODIC SCALAR p-LAPLACIAN
    Barletta, Giuseppina
    Livera, Roberto
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) : 1075 - 1086
  • [43] A weighted eigenvalue problem for the p-Laplacian plus a potential
    Cuesta, Mabel
    Quoirin, Humberto Ramos
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (04): : 469 - 491
  • [44] Optimal Shape Design for the p-Laplacian Eigenvalue Problem
    Seyyed Abbas Mohammadi
    Farid Bozorgnia
    Heinrich Voss
    Journal of Scientific Computing, 2019, 78 : 1231 - 1249
  • [45] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces
    Mustonen, V
    Tienari, M
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 : 153 - 163
  • [46] An optimization problem for the first eigenvalue of the p-fractional Laplacian
    Del Pezzo, Leandro
    Fernandez Bonder, Julian
    Lopez Rios, Luis
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (04) : 632 - 651
  • [47] A generalized Fucik type eigenvalue problem for p-Laplacian
    Cheng, Yuanji
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009, (18) : 1 - 9
  • [48] THE ASYMPTOTIC BEHAVIOUR OF THE p(x)-LAPLACIAN STEKLOV EIGENVALUE PROBLEM
    Yu, Lujuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2621 - 2637
  • [49] A virtual element method for the Laplacian eigenvalue problem in mixed form
    Meng, Jian
    Zhang, Yongchao
    Mei, Liquan
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 1 - 13
  • [50] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    A. Zerouali
    B. Karim
    O. Chakrone
    A. Boukhsas
    Afrika Matematika, 2019, 30 : 171 - 179