The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme

被引:1
|
作者
Bozorgnia, Farid [1 ]
Bungert, Leon [2 ]
Tenbrinck, Daniel [3 ]
机构
[1] Inst Super Tecn, Dept Math, Lisbon, Portugal
[2] Univ Wurzburg, Inst Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, Erlangen, Germany
基金
欧盟地平线“2020”;
关键词
Infinity Laplacian operator; Infinity ground states; Nonlinear Eigenvalue problems; Monotone schemes; LIPSCHITZ EXTENSIONS; NEWTON METHODS; POWER METHOD; EQUATIONS; GRAPHS; IMAGE;
D O I
10.1007/s10915-023-02425-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present an alternative formulation of the higher eigenvalue problem associated to the infinity Laplacian, which opens the door for numerical approximation of eigenfunctions. A rigorous analysis is performed to show the equivalence of the new formulation to the traditional one. Subsequently, we present consistent monotone schemes to approximate infinity ground states and higher eigenfunctions on grids. We prove that our method converges (up to a subsequence) to a viscosity solution of the eigenvalue problem, and perform numerical experiments which investigate theoretical conjectures and compute eigenfunctions on a variety of different domains.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] On the p(x)-Laplacian Robin eigenvalue problem
    Deng, Shao-Gao
    Wang, Qin
    Cheng, Shijuan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5643 - 5649
  • [22] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [23] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64
  • [24] Eigenvalue inequalities for the buckling problem of the drifting Laplacian
    Qi, Xuerong
    Wang, Zhaoxia
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 840 - 852
  • [25] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [26] An eigenvalue optimization problem for the p-Laplacian
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) : 1145 - 1151
  • [27] Numerical approximation based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem
    Jiang, Jiantao
    An, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17367 - 17387
  • [28] Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem
    Zhai, Qilong
    Xie, Hehu
    Zhang, Ran
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 914 - 934
  • [29] On the eigenvalue problem for the p-Laplacian operator in RN
    Liu, Jiaquan
    Liu, Xiangqing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 861 - 869
  • [30] On a Steklov eigenvalue problem associated with the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 161 - 171