Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via quintic B-splines

被引:1
|
作者
Choudhary, Renu [1 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
关键词
Caputo derivative; backward Euler scheme; time-fractional linear Kuramoto-Sivashinsky equation; B-splines; convergence; error estimates; NULL-CONTROLLABILITY; BIFURCATION; DIFFUSION; SCHEME; FLOW; MHD;
D O I
10.1080/00207160.2023.2201642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme is developed to solve the time-fractional linear Kuramoto-Sivahinsky equation in this work. The time-fractional derivative (of order ?) is taken in the Caputo sense. The scheme comprises the backward Euler formula in the temporal direction and the quintic B-spline collocation approach in the spatial direction. Through rigorous analysis, the proposed method is shown to be unconditionally stable and convergent of order 2 - ? and two in the temporal and spatial directions, respectively. Two test problems are solved numerically to demonstrate the convergence and accuracy of the method.
引用
下载
收藏
页码:1512 / 1531
页数:20
相关论文
共 50 条
  • [41] Exponential B-splines Galerkin Method for the Numerical Solution of the Fisher's Equation
    Gorgulu, Melis Zorsahin
    Dag, Idris
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2189 - 2198
  • [42] A numerical solution of the RLW equation by Galerkin method using quartic B-splines
    Saka, Buelent
    Dag, Idris
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11): : 1339 - 1361
  • [43] GALERKIN METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRODINGER EQUATION BY USING TRIGONOMETRIC B-SPLINES
    MERSIN, M. A.
    IRK, D.
    GORGULU, M. Z. O. R. S. A. H. I. N.
    MISKOLC MATHEMATICAL NOTES, 2022, 23 (01) : 363 - 380
  • [44] Exponential B-splines Galerkin Method for the Numerical Solution of the Fisher’s Equation
    Melis Zorsahin Gorgulu
    Idris Dag
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 2189 - 2198
  • [45] Galerkin method for the numerical solution of the RLW equation using quadratic B-splines
    Saka, B
    Dag, I
    Dogan, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (06) : 727 - 739
  • [46] Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm
    Al-Sawalha, M. Mossa
    Alshehry, Azzh Saad
    Nonlaopon, Kamsing
    Shah, Rasool
    Ababneh, Osama Y.
    AIMS MATHEMATICS, 2022, 7 (11): : 19739 - 19757
  • [47] Analytic and Numerical Solutions of Time-Fractional Linear Schrodinger Equation
    Edeki, S. O.
    Akinlabi, G. O.
    Adeosun, S. A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (01): : 1 - 10
  • [48] Numerical Solution of Time-Fractional Schrodinger Equation by Using FDM
    Serik, Moldir
    Eskar, Rena
    Huang, Pengzhan
    AXIOMS, 2023, 12 (09)
  • [49] The numerical solution for the time-fractional inverse problem of diffusion equation
    Shivanian, Elyas
    Jafarabadi, Ahmad
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 91 : 50 - 59
  • [50] A robust numerical solution to a time-fractional Black–Scholes equation
    S. M. Nuugulu
    F. Gideon
    K. C. Patidar
    Advances in Difference Equations, 2021