Numerical solution of linear time-fractional Kuramoto-Sivashinsky equation via quintic B-splines

被引:1
|
作者
Choudhary, Renu [1 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
关键词
Caputo derivative; backward Euler scheme; time-fractional linear Kuramoto-Sivashinsky equation; B-splines; convergence; error estimates; NULL-CONTROLLABILITY; BIFURCATION; DIFFUSION; SCHEME; FLOW; MHD;
D O I
10.1080/00207160.2023.2201642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme is developed to solve the time-fractional linear Kuramoto-Sivahinsky equation in this work. The time-fractional derivative (of order ?) is taken in the Caputo sense. The scheme comprises the backward Euler formula in the temporal direction and the quintic B-spline collocation approach in the spatial direction. Through rigorous analysis, the proposed method is shown to be unconditionally stable and convergent of order 2 - ? and two in the temporal and spatial directions, respectively. Two test problems are solved numerically to demonstrate the convergence and accuracy of the method.
引用
下载
收藏
页码:1512 / 1531
页数:20
相关论文
共 50 条
  • [31] A numerical solution of the Burgers' equation using septic B-splines
    Ramadan, MA
    El-Danaf, TS
    Alaal, FEIA
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 795 - 804
  • [32] A numerical solution of the Burgers' equation using septic B-splines
    Ramadan, MA
    El-Danaf, TS
    Alaal, FEI
    CHAOS SOLITONS & FRACTALS, 2005, 26 (04) : 1249 - 1258
  • [33] A numerical solution of the Burgers' equation using cubic B-splines
    Dag, I
    Irk, D
    Saka, B
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (01) : 199 - 211
  • [34] Application of cubic B-splines for numerical solution of the RLW equation
    Dag, I
    Saka, B
    Irk, D
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 373 - 389
  • [35] Application of new quintic polynomial B-spline approximation for numerical investigation of Kuramoto–Sivashinsky equation
    Muhammad Kashif Iqbal
    Muhammad Abbas
    Tahir Nazir
    Nouman Ali
    Advances in Difference Equations, 2020
  • [36] Enhanced numerical solution for time fractional Kuramoto–Sivashinsky dynamics via shifted companion Morgan–Voyce polynomials
    Panumart Sawangtong
    Mehran Taghipour
    Alireza Najafi
    Computational and Applied Mathematics, 2025, 44 (5)
  • [37] A numerical technique for solution of the MRLW equation using quartic B-splines
    Fazal-i-Haq
    Siraj-ul-Islam
    Tirmizi, Ikram A.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) : 4151 - 4160
  • [38] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [39] Numerical solution of time-fractional Black–Scholes equation
    Miglena N. Koleva
    Lubin G. Vulkov
    Computational and Applied Mathematics, 2017, 36 : 1699 - 1715
  • [40] Numerical simulation of Fisher's type equation via a collocation technique based on re-defined quintic B-splines
    Dhiman, Neeraj
    Chauhan, Amit
    Tamsir, Mohammad
    Chauhan, Anand
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2020, 16 (05) : 1117 - 1130