Cohomology of nonabelian embedding tensors on Hom-Lie algebras

被引:0
|
作者
Teng, Wen [1 ]
Jin, Jiulin [2 ]
Zhang, Yu [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Guiyang Univ, Coll Math & Informat Sci, Guiyang 550005, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
Hom-Lie algebra; Hom-Leibniz-Lie algebra; nonabelian embedding tensor; cohomology; deformation; DEFORMATIONS;
D O I
10.3934/math.20231079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.
引用
收藏
页码:21176 / 21190
页数:15
相关论文
共 50 条
  • [1] Extensions of hom-Lie algebras in terms of cohomology
    Abdoreza R. Armakan
    Mohammed Reza Farhangdoost
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 317 - 328
  • [2] Extensions of hom-Lie algebras in terms of cohomology
    Armakan, Abdoreza R.
    Farhangdoost, Mohammed Reza
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 317 - 328
  • [3] Cohomology and deformations of compatible Hom-Lie algebras
    Das, Apurba
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [4] Cohomology and deformations for the Heisenberg Hom-Lie algebras
    Alejandra Alvarez, Maria
    Cartes, Francisco
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2209 - 2229
  • [5] CONSTRUCTIONS AND COHOMOLOGY OF HOM-LIE COLOR ALGEBRAS
    Abdaoui, K.
    Ammar, F.
    Makhlouf, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (11) : 4581 - 4612
  • [6] Fuzzy Hom-Lie Ideals of Hom-Lie Algebras
    Shaqaqha, Shadi
    [J]. AXIOMS, 2023, 12 (07)
  • [7] Almost contact Hom-Lie algebras and Sasakian Hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [8] On Hom-Lie algebras
    Sheng, Yunhe
    Xiong, Zhen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12): : 2379 - 2395
  • [9] Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
    Jiang, Jun
    Mishra, Satyendra Kumar
    Sheng, Yunhe
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [10] Differential geometry of Hom-Lie algebras and Hom-Lie algebroids
    Sahin, Bayram
    Sahin, Fulya
    [J]. QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 609 - 635