Cohomology of nonabelian embedding tensors on Hom-Lie algebras

被引:0
|
作者
Teng, Wen [1 ]
Jin, Jiulin [2 ]
Zhang, Yu [1 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Guiyang Univ, Coll Math & Informat Sci, Guiyang 550005, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
Hom-Lie algebra; Hom-Leibniz-Lie algebra; nonabelian embedding tensor; cohomology; deformation; DEFORMATIONS;
D O I
10.3934/math.20231079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize known results of nonabelian embedding tensor to the Hom setting. We introduce the concept of Hom-Leibniz-Lie algebra, which is the basic algebraic structure of nonabelian embedded tensors on Hom-Lie algebras and can also be regarded as a nonabelian generalization of Hom-Leibniz algebra. Moreover, we define a cohomology of nonabelian embedding tensors on Hom-Lie algebras with coefficients in a suitable representation. The first cohomology group is used to describe infinitesimal deformations as an application. In addition, Nijenhuis elements are used to describe trivial infinitesimal deformations.
引用
收藏
页码:21176 / 21190
页数:15
相关论文
共 50 条
  • [21] α-TYPE CHEVALLEY-EILENBERG COHOMOLOGY OF HOM-LIE ALGEBRAS AND BIALGEBRAS
    Hurle, Benedikt
    Makhlouf, Abdenacer
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2020, 62 : S108 - S127
  • [22] Current Hom-Lie algebras
    Ben Jmaa, Torkia
    Makhlouf, Abdenacer
    Saadaoui, Nejib
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 103 - 127
  • [23] On Hom-Gerstenhaber algebras, and Hom-Lie algebroids
    Mandal, Ashis
    Mishra, Satyendra Kumar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 : 287 - 302
  • [24] Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras
    Arnlind, Joakim
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [25] Enveloping algebras of color hom-Lie algebras
    Armakan, Abdoreza
    Silvestrov, Sergei
    Farhangdoost, Mohammad Reza
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 316 - 339
  • [26] Cohomology and Deformation Theory of O-Operators on Hom-Lie Conformal Algebras
    Asif, Sania
    Wang, Yao
    Mosbahi, Bouzid
    Basdouri, Imed
    [J]. SSRN,
  • [27] Biderivations of Hom-Lie Algebras and Superalgebras
    Yuan, La Mei
    Li, Jia Xin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, : 2337 - 2358
  • [28] Nijenhuis operators on Hom-Lie algebras
    Das, Apurba
    Sen, Sourav
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 1038 - 1054
  • [29] Hom-Lie Algebras with a Set Grading
    Valiollah Khalili
    [J]. Vietnam Journal of Mathematics, 2022, 50 : 111 - 124
  • [30] Hom-Lie Algebras with a Set Grading
    Khalili, Valiollah
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (01) : 111 - 124