Cohomology and deformations of compatible Hom-Lie algebras

被引:1
|
作者
Das, Apurba [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, West Bengal, India
关键词
Hom-Lie algebras; Compatible structures; Cohomology; Extensions; Deformations; BRACKETS;
D O I
10.1016/j.geomphys.2023.104951
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider compatible Hom-Lie algebras as a twisted version of compatible Lie algebras. Compatible Hom-Lie algebras are characterized as Maurer-Cartan elements in a suitable bidifferential graded Lie algebra. We also define a cohomology theory for compatible Hom-Lie algebras generalizing the recent work of Liu, Sheng and Bai. As applications of cohomology, we study abelian extensions and deformations of compatible Hom-Lie algebras.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Cohomology and deformations for the Heisenberg Hom-Lie algebras
    Alejandra Alvarez, Maria
    Cartes, Francisco
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2209 - 2229
  • [2] Extensions of hom-Lie algebras in terms of cohomology
    Abdoreza R. Armakan
    Mohammed Reza Farhangdoost
    [J]. Czechoslovak Mathematical Journal, 2017, 67 : 317 - 328
  • [3] Extensions of hom-Lie algebras in terms of cohomology
    Armakan, Abdoreza R.
    Farhangdoost, Mohammed Reza
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 317 - 328
  • [4] CONSTRUCTIONS AND COHOMOLOGY OF HOM-LIE COLOR ALGEBRAS
    Abdaoui, K.
    Ammar, F.
    Makhlouf, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (11) : 4581 - 4612
  • [5] Fuzzy Hom-Lie Ideals of Hom-Lie Algebras
    Shaqaqha, Shadi
    [J]. AXIOMS, 2023, 12 (07)
  • [6] Cohomology of nonabelian embedding tensors on Hom-Lie algebras
    Teng, Wen
    Jin, Jiulin
    Zhang, Yu
    [J]. AIMS MATHEMATICS, 2023, 8 (09): : 21176 - 21190
  • [7] Deformations and generalized derivations of Hom-Lie conformal algebras
    Zhao, Jun
    Yuan, Lamei
    Chen, Liangyun
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (05) : 797 - 812
  • [8] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    [J]. Science China Mathematics, 2018, 61 (05) : 797 - 812
  • [9] Almost contact Hom-Lie algebras and Sasakian Hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)
  • [10] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    [J]. Science China Mathematics, 2018, 61 : 797 - 812