Machine-Learning-Based Composition Analysis of the Stability of V-Cr-Ti Alloys

被引:2
|
作者
Tanabe, Katsuaki [1 ]
机构
[1] Kyoto Univ, Dept Chem Engn, Nishikyo, Kyoto 6158510, Japan
来源
JOURNAL OF NUCLEAR ENGINEERING | 2023年 / 4卷 / 02期
基金
日本学术振兴会;
关键词
materials informatics; machine learning; nuclear fusion; nuclear fission; reactor materials; vanadium; chromium; titanium; ductile-brittle transition temperature; swelling; VANADIUM ALLOYS; FABRICATION;
D O I
10.3390/jne4020024
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V-Cr-Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V-Cr-Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile-brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti similar to 60 wt.%, at a significantly low ductile-brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V-Cr-Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 50 条
  • [41] PHASE-STABILITY IN TI-V AND TI-CR ALLOYS - A THEORETICAL INVESTIGATION
    SLUITER, M
    TURCHI, PEA
    PHYSICAL REVIEW B, 1991, 43 (15): : 12251 - 12266
  • [42] A low cost and rapid analytical technique for direct spectrophotometric determination of chromium in V-Cr-Ti alloys without a chromogenic agent
    Tian, L. F.
    Zou, D. S.
    Dai, Y. C.
    Wang, L. L.
    Gao, W.
    ANALYTICAL METHODS, 2017, 9 (30) : 4471 - 4475
  • [43] Thermal stability of Ti-V-Cr burn-resistant alloys
    Zhu, KY
    Zhao, YQ
    Qu, HL
    Wu, H
    JOURNAL OF MATERIALS SCIENCE, 2004, 39 (07) : 2387 - 2394
  • [44] Thermal stability of Ti-V-Cr burn-resistant alloys
    K. Y. Zhu
    Y. Q. Zhao
    H. L. Qu
    H. Wu
    Journal of Materials Science, 2004, 39 : 2387 - 2394
  • [45] Effect of low temperature irradiation on the mechanical properties of ternary V-Cr-Ti alloys as determined by tensile tests and shear punch tests
    Hamilton, ML
    Toloczko, MB
    JOURNAL OF NUCLEAR MATERIALS, 2000, 283 (PART I) : 488 - 491
  • [46] Wangiri Fraud: Pattern Analysis and Machine-Learning-Based Detection
    Ravi, Akshaya
    Msahli, Mounira
    Qiu, Han
    Memmi, Gerard
    Bifet, Albert
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6794 - 6802
  • [47] A Machine-Learning-Based Framework for Supporting Malware Detection and Analysis
    Cuzzocrea, Alfredo
    Mercaldo, Francesco
    Martinelli, Fabio
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 353 - 365
  • [48] Machine-learning-based image categorization
    Han, YT
    Qi, XJ
    IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 585 - 592
  • [49] Machine-Learning-Based Accessibility System
    Banerjee K.
    Singh A.
    Akhtar N.
    Vats I.
    SN Computer Science, 5 (3)
  • [50] 聚变用V-Cr-Ti合金的研究现状与展望
    李增德
    崔舜
    林晨光
    李明
    周增林
    李学军
    稀有金属, 2007, (06) : 840 - 846