Machine-Learning-Based Composition Analysis of the Stability of V-Cr-Ti Alloys

被引:2
|
作者
Tanabe, Katsuaki [1 ]
机构
[1] Kyoto Univ, Dept Chem Engn, Nishikyo, Kyoto 6158510, Japan
来源
JOURNAL OF NUCLEAR ENGINEERING | 2023年 / 4卷 / 02期
基金
日本学术振兴会;
关键词
materials informatics; machine learning; nuclear fusion; nuclear fission; reactor materials; vanadium; chromium; titanium; ductile-brittle transition temperature; swelling; VANADIUM ALLOYS; FABRICATION;
D O I
10.3390/jne4020024
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V-Cr-Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V-Cr-Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile-brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti similar to 60 wt.%, at a significantly low ductile-brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V-Cr-Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 50 条
  • [31] Machine-Learning-Based Functional Microcirculation Analysis
    Mahmoud, Ossama
    Janssen, G. H.
    El-Sakka, Mahmoud R.
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13326 - 13331
  • [32] Radiochemical reprocessing of V-Cr-Ti alloy and its feasibility study
    Bartenev, SA
    Kvasnitskij, IB
    Kolbasov, BN
    Romanov, PV
    Romanovskij, VN
    JOURNAL OF NUCLEAR MATERIALS, 2004, 329 : 406 - 410
  • [33] NIFS program for large ingot production of a V-Cr-Ti alloy
    Muroga, T
    Nagasaka, T
    Iiyoshi, A
    Kawabata, A
    Sakurai, S
    Sakata, M
    JOURNAL OF NUCLEAR MATERIALS, 2000, 283 (283-287) : 711 - 715
  • [34] CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium system
    Park, JH
    Kassner, TF
    JOURNAL OF NUCLEAR MATERIALS, 1996, 233 : 476 - 481
  • [35] Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V-Cr-Ti Alloys with Low Ti Addition
    Fukumoto, Ken-ichi
    Miura, Shuichiro
    Kitamura, Yoshiki
    Ishigami, Ryoya
    Nagasaka, Takuya
    QUANTUM BEAM SCIENCE, 2021, 5 (03)
  • [36] EFFECTS OF NEUTRON-IRRADIATION AND HYDROGEN ON DUCTILE-BRITTLE TRANSITION-TEMPERATURES OF V-CR-TI ALLOYS
    LOOMIS, BA
    CHUNG, HM
    NOWICKI, LJ
    SMITH, DL
    JOURNAL OF NUCLEAR MATERIALS, 1994, 212 (pt A) : 799 - 803
  • [37] Machine-Learning-Based Thermal Conductivity Prediction for Additively Manufactured Alloys
    Bhandari, Uttam
    Chen, Yehong
    Ding, Huan
    Zeng, Congyuan
    Emanet, Selami
    Gradl, Paul R.
    Guo, Shengmin
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (05):
  • [38] 聚变用V-Cr-Ti合金的研究进展
    杨彪
    王丽阁
    王恩泽
    材料导报, 2014, 28 (05) : 143 - 146
  • [39] Machine-learning-based atom probe crystallographic analysis
    Wei, Ye
    Gault, Baptiste
    Varanasi, Rama Srinivas
    Raabe, Dierk
    Herbig, Michael
    Breen, Andrew J.
    ULTRAMICROSCOPY, 2018, 194 : 15 - 24
  • [40] In-depth and ion image analysis of minor and trace constituents in V-Cr-Ti alloy welds
    Odom, RW
    Grossbeck, ML
    JOURNAL OF MATERIALS RESEARCH, 1996, 11 (08) : 1923 - 1933