Monotonicity Formulas for Harmonic Functions in RCD(0, N) Spaces

被引:0
|
作者
Gigli, Nicola [1 ]
Violo, Ivan Yuri [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
关键词
Monotonicity formula; Harmonic functions; RCD spaces; Almost rigidity; METRIC-MEASURE-SPACES; LOCAL DIRICHLET SPACES; RICCI CURVATURE; DIFFERENTIAL-EQUATIONS; LIPSCHITZ FUNCTIONS; TANGENT-CONES; HEAT KERNEL; BOUNDS; MANIFOLDS; SOBOLEV;
D O I
10.1007/s12220-022-01131-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize to the RCD(0, N) setting a family of monotonicity formulas by Colding and Minicozzi for positive harmonic functions in Riemannian manifolds with non negative Ricci curvature. Rigidity and almost rigidity statements are also proven, the second appearing to be new even in the smooth setting. Motivated by the recent work in Agostiniani et al. (Invent. Math. 222(3):1033-1101, 2020), we also introduce the notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity formulas. Our arguments are mainly based on new estimates for harmonic functions in RCD(K, N) spaces and on a new functional version of the "(almost) outer volume cone implies (almost) outer metric cone' theorem.
引用
收藏
页数:89
相关论文
共 50 条
  • [31] Local spectral convergence in RCD*(K, N) spaces
    Ambrosio, Luigi
    Honda, Shouhei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 1 - 23
  • [32] Calculus and Fine Properties of Functions of Bounded Variation on RCD Spaces
    Brena, Camillo
    Gigli, Nicola
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [33] Characterization of Low Dimensional RCD*(K, N) Spaces
    Kitabeppu, Yu
    Lakzian, Sajjad
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 187 - 215
  • [34] HARMONIC FUNCTIONS ON THE LATTICE: ABSOLUTE MONOTONICITY AND PROPAGATION OF SMALLNESS
    Lippner, Gabor
    Mangoubi, Dan
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (13) : 2577 - 2595
  • [35] Harmonic functions on metric spaces
    Shanmugalingam, N
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) : 1021 - 1050
  • [36] Complementability of Spaces of Harmonic Functions
    Jiří Spurný
    Potential Analysis, 2008, 29 : 271 - 302
  • [37] On the topology and the boundary of N-dimensional RCD (K, N) spaces
    Kapovitch, Vitali
    Mondino, Andrea
    GEOMETRY & TOPOLOGY, 2021, 25 (01) : 445 - 495
  • [38] Wavelets in spaces of harmonic functions
    Subbotin, YN
    Chernykh, NI
    IZVESTIYA MATHEMATICS, 2000, 64 (01) : 143 - 171
  • [39] Harmonic functions on homogeneous spaces
    Chu, CH
    Leung, CW
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (03): : 227 - 235
  • [40] Harmonic Spaces and Density Functions
    P. B. Gilkey
    J. H. Park
    Results in Mathematics, 2020, 75