Monotonicity Formulas for Harmonic Functions in RCD(0, N) Spaces

被引:0
|
作者
Gigli, Nicola [1 ]
Violo, Ivan Yuri [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
关键词
Monotonicity formula; Harmonic functions; RCD spaces; Almost rigidity; METRIC-MEASURE-SPACES; LOCAL DIRICHLET SPACES; RICCI CURVATURE; DIFFERENTIAL-EQUATIONS; LIPSCHITZ FUNCTIONS; TANGENT-CONES; HEAT KERNEL; BOUNDS; MANIFOLDS; SOBOLEV;
D O I
10.1007/s12220-022-01131-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize to the RCD(0, N) setting a family of monotonicity formulas by Colding and Minicozzi for positive harmonic functions in Riemannian manifolds with non negative Ricci curvature. Rigidity and almost rigidity statements are also proven, the second appearing to be new even in the smooth setting. Motivated by the recent work in Agostiniani et al. (Invent. Math. 222(3):1033-1101, 2020), we also introduce the notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity formulas. Our arguments are mainly based on new estimates for harmonic functions in RCD(K, N) spaces and on a new functional version of the "(almost) outer volume cone implies (almost) outer metric cone' theorem.
引用
收藏
页数:89
相关论文
共 50 条
  • [21] Ricci Tensor on RCD*(K, N) Spaces
    Han, Bang-Xian
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1295 - 1314
  • [22] Radial processes on RCD*(K, N) spaces
    Kuwada, Kazumasa
    Kuwae, Kazuhrio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 72 - 108
  • [23] On the isometry group of RCD*(K, N)-spaces
    Guijarro, Luis
    Santos-Rodriguez, Jaime
    MANUSCRIPTA MATHEMATICA, 2019, 158 (3-4) : 441 - 461
  • [24] Spaces of harmonic functions
    Sung, CJ
    Tam, LF
    Wang, JP
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 789 - 806
  • [25] Asymptotically Mean Value Harmonic Functions in Subriemannian and RCD Settings
    Adamowicz, Tomasz
    Kijowski, Antoni
    Soultanis, Elefterios
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [26] Asymptotically Mean Value Harmonic Functions in Subriemannian and RCD Settings
    Tomasz Adamowicz
    Antoni Kijowski
    Elefterios Soultanis
    The Journal of Geometric Analysis, 2023, 33
  • [27] Recognizing the flat torus among RCD*(0, N) spaces via the study of the first cohomology group
    Gigli, Nicola
    Rigoni, Chiara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)
  • [28] An almost rigidity theorem and its applications to noncompact RCD(0, N) spaces with linear volume growth
    Huang, Xian-Tao
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [29] MONOTONICITY AND TOTAL BOUNDEDNESS IN SPACES OF "MEASURABLE" FUNCTIONS
    Caponetti, Diana
    Trombetta, Alessandro
    Trombetta, Giulio
    MATHEMATICA SLOVACA, 2017, 67 (06) : 1497 - 1508
  • [30] Calculus and Fine Properties of Functions of Bounded Variation on RCD Spaces
    Camillo Brena
    Nicola Gigli
    The Journal of Geometric Analysis, 2024, 34