The Uniform Effros Property and Local Homogeneity

被引:0
|
作者
Macias, Sergio [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Circuito Exterior, Ciudad Univ, Mexico City 04510, Mexico
关键词
Compact Hausdorff space; Effros continuum; Hausdorff continuum; homogeneous space; Jones' aposyndetic decomposition; local homogeneity; Pra[!text type='js']js[!/text]' mutual aposyndetic decomposition; set function T; uniformity; uniform property of Effros; CONTINUUM;
D O I
10.1515/ms-2023-0075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kathryn F. Porter wrote a nice paper about several definitions of local homogeneity [Local homogeneity, JP Journal of Geometry and Topology 9 (2009), 129-136]. In this paper, she mentions that G. S. Ungar defined a uniformly locally homogeneous space [Local homogeneity, Duke Math. J. 34 (1967), 693-700]. We realized that this notion is very similar to what we call the uniform property of Effros [On Jones' set function T and the property of Kelley for Hausdorff continua, Topology Appl. 226 (2017), 51-65]. Here, we compare the uniform property of Effros with the uniform local homogeneity. We also consider other definitions of local homogeneity given in Porter's paper and compare them with the uniform property of Effros. We show that in the presence of compactness, the uniform property of Effros is equivalent to uniform local homogeneity and the local homogeneity according to Ho. With this result, we can change the hypothesis of the uniform property of Effros in Jones' and Prajs' decomposition theorems to uniform local homogeneity and local homogeneity according to Ho. We add to these two results the fact that the corresponding quotient space also has the uniform property of Effros.
引用
收藏
页码:1013 / 1022
页数:10
相关论文
共 50 条
  • [41] Probing cosmic homogeneity in the Local Universe
    Dias, Bruno L.
    Avila, Felipe
    Bernui, Armando
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (03) : 3219 - 3229
  • [42] Homogeneity and local symmetry of complex (κ, µ)-spaces
    David E. Blair
    Adela Mihai
    Israel Journal of Mathematics, 2012, 187 : 451 - 464
  • [43] Local strong homogeneity of a regularized estimator
    Nikolova, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (02) : 633 - 658
  • [44] LOCAL CONTINUOUS NEAR-HOMOGENEITY
    KRONK, HV
    ARCHIV DER MATHEMATIK, 1967, 18 (04) : 396 - &
  • [45] Strong local homogeneity and coset spaces
    Van Mill, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2243 - 2249
  • [46] Uniform local amenability
    Brodzki, Jacek
    Niblo, Graham A.
    Spakula, Jan
    Willett, Rufus
    Wright, Nick
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (02) : 583 - 603
  • [48] Some notes on ∨-homogeneity property of semiconormed fuzzy integrals
    Ouyang, Yao
    Sun, Hongxia
    Li, Jun
    FUZZY SETS AND SYSTEMS, 2006, 157 (11) : 1572 - 1575
  • [49] Homogeneity Property of Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    Vybiral, Jan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [50] A homogeneity property of a class of discrete-time systems
    Sanchez, Tonametl
    Efimov, Denis
    Polyakov, Andrey
    Moreno, Jaime A.
    Perruquetti, Wilfrid
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,