The Uniform Effros Property and Local Homogeneity

被引:0
|
作者
Macias, Sergio [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Circuito Exterior, Ciudad Univ, Mexico City 04510, Mexico
关键词
Compact Hausdorff space; Effros continuum; Hausdorff continuum; homogeneous space; Jones' aposyndetic decomposition; local homogeneity; Pra[!text type='js']js[!/text]' mutual aposyndetic decomposition; set function T; uniformity; uniform property of Effros; CONTINUUM;
D O I
10.1515/ms-2023-0075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kathryn F. Porter wrote a nice paper about several definitions of local homogeneity [Local homogeneity, JP Journal of Geometry and Topology 9 (2009), 129-136]. In this paper, she mentions that G. S. Ungar defined a uniformly locally homogeneous space [Local homogeneity, Duke Math. J. 34 (1967), 693-700]. We realized that this notion is very similar to what we call the uniform property of Effros [On Jones' set function T and the property of Kelley for Hausdorff continua, Topology Appl. 226 (2017), 51-65]. Here, we compare the uniform property of Effros with the uniform local homogeneity. We also consider other definitions of local homogeneity given in Porter's paper and compare them with the uniform property of Effros. We show that in the presence of compactness, the uniform property of Effros is equivalent to uniform local homogeneity and the local homogeneity according to Ho. With this result, we can change the hypothesis of the uniform property of Effros in Jones' and Prajs' decomposition theorems to uniform local homogeneity and local homogeneity according to Ho. We add to these two results the fact that the corresponding quotient space also has the uniform property of Effros.
引用
收藏
页码:1013 / 1022
页数:10
相关论文
共 50 条
  • [21] Local homogeneity and dimensions of measures
    Kaenmaki, Antti
    Rajala, Tapio
    Suomala, Ville
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (04) : 1315 - 1351
  • [22] LOCAL NEAR-HOMOGENEITY
    GUAY, MD
    KRONK, HV
    HOCKING, JG
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (08): : 827 - &
  • [23] Dispossession, intellectual property, and the sin of theoretical homogeneity
    Hoffstadt, Brian M.
    SOUTHERN CALIFORNIA LAW REVIEW, 2007, 80 (05) : 909 - 967
  • [24] INJECTIVE HOMOGENEITY AND THE AUSLANDER-GORENSTEIN PROPERTY
    YI, Z
    GLASGOW MATHEMATICAL JOURNAL, 1995, 37 : 191 - 204
  • [25] UTES PHASE AND LIMITATIONS OF ITS PROPERTY OF HOMOGENEITY
    KHODADAD, P
    GUERMAN, H
    JOURNAL OF THE LESS-COMMON METALS, 1975, 40 (03): : 293 - 297
  • [26] OPENNESS, HOMOGENEITY AND BAIRE PROPERTY IN THE REMAINDERS OF SPACES
    Arhangel'skii, Alexander
    Choban, Mitrofan
    Mihaylova, Ekaterina
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (12): : 1623 - 1630
  • [27] ELLIPTIC ELEMENTS IN A WEYL GROUP: A HOMOGENEITY PROPERTY
    Lusztig, G.
    REPRESENTATION THEORY, 2012, 16 : 127 - 151
  • [28] A uniform property of affine domains
    Wang, HJ
    JOURNAL OF ALGEBRA, 1999, 215 (02) : 500 - 508
  • [29] Property (ω) and topological uniform descent
    Qiaoling Xin
    Lining Jiang
    Frontiers of Mathematics in China, 2014, 9 : 1411 - 1426
  • [30] Property (β) and uniform quotient maps
    Lima, Vegard
    Randrianarivony, N. Lovasoa
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) : 311 - 323