Platinum/Tantalum Carbide Core-Shell Nanoparticles with Sub-Monolayer Shells for Methanol and Oxygen Electrocatalysis

被引:0
|
作者
Wang, Zhenshu [1 ]
Kang, Jin Soo [1 ,2 ,3 ,4 ]
Goehl, Daniel [5 ]
Paciok, Paul [6 ,7 ]
Goncalves, Danelle S. [8 ]
Lim, Hyung-Kyu [9 ]
Zanchet, Daniela [8 ]
Heggen, Marc [6 ,7 ]
Shao-Horn, Yang [2 ,10 ,11 ]
Ledendecker, Marc [5 ,12 ]
Roman-Leshkov, Yuriy [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Seoul Natl Univ, Dept Energy Syst Engn, Dept Energy Resources Engn, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Energy & Resources, Seoul 08826, South Korea
[5] Tech Univ Darmstadt, Ernst Berl Inst Tech & Makromolekulare Chem, Dept Chem, D-64287 Darmstadt, Germany
[6] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[7] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[8] Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil
[9] Kangwon Natl Univ, Div Chem Engn & Bioengn, Chunchon 24341, Gangwon Do, South Korea
[10] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[11] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[12] Tech Univ Munich, Dept Sustainable Energy Mat, Campus Straubing Biotechnol & Sustainabil, D-94315 Straubing, Germany
关键词
core-shell nanoparticles; electrocatalysis; fuel cells; methanol oxidation; oxygen reduction; tantalum carbide; TRANSITION-METAL CARBIDES; HIGH-PERFORMANCE; ELECTROCHEMICAL STABILITY; CATALYTIC-ACTIVITY; SINGLE-CRYSTAL; PLATINUM; REDUCTION; OXIDATION; CROSSOVER; ELECTROOXIDATION;
D O I
10.1002/aenm.202304092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell architectures provide great opportunities to improve catalytic activity, but achieving nanoparticle stability under electrochemical cycling remains challenging. Herein, core-shell nanoparticles comprising atomically thin Pt shells over earth-abundant TaC cores are synthesized and used as highly durable electrocatalysts for the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) needed to drive direct methanol fuel cells (DMFCs). Characterization data show that a thin oxidic passivation layer protects the TaC core from undergoing dissolution in the fuel cell-relevant potential range, enabling the use of partially covered Pt/TaC core-shell nanoparticles for MOR and ORR with high stability and enhanced catalytic performance. Specifically, at the anode the surface-oxidized TaC further enhances MOR activity compared to conventional Pt nanoparticles. At the cathode, the Pt/TaC catalyst feature increases tolerance to methanol crossover. These results show unique synergistic advantages of the core-shell particles and open opportunities to tailor catalytic properties for electrocatalytic reactions. Pt/TaC core-shell nanoparticles are synthesized and applied as electrocatalysts for direct methanol fuel cell reactions. TaC core not only manifests an excellent stability, but also contributes to an enhanced methanol-oxidation activity. The capability to handle methanol also leads to improved oxygen-reduction performance under the presence of methanol, showing the robustness of Pt/TaC catalysts regarding the methanol crossover issue. image
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Study of core-shell platinum-based catalyst for methanol and ethylene glycol oxidation
    Kaplan, D.
    Alon, M.
    Burstein, L.
    Rosenberg, Yu
    Peled, E.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1078 - 1083
  • [32] Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electrooxidation
    Luo, J
    Maye, MM
    Lou, YB
    Han, L
    Hepel, M
    Zhong, CJ
    CATALYSIS TODAY, 2002, 77 (1-2) : 127 - 138
  • [33] Monolayer Iridium Nanoparticles Coated TiO2 Core-Shell Architecture as Efficient Oxygen Evolution Reaction Electrocatalyst
    Chen, Jiaye
    Jayabal, Subramaniam
    Geng, Dongsheng
    Hu, Xun
    CHEMISTRYSELECT, 2021, 6 (34): : 9134 - 9138
  • [34] Synthesis and Characterization of Palladium-Platinum Core-Shell Electrocatalysts for Oxygen Reduction
    Humbert, Michael P.
    Smith, Brandon H.
    Wang, Qi
    Ehrlich, Steven N.
    Shao, Minhua
    ELECTROCATALYSIS, 2012, 3 (3-4) : 298 - 303
  • [35] Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis
    Lyu, Xiao
    Jia, Yi
    Mao, Xin
    Li, Daohao
    Li, Gen
    Zhuang, Linzhou
    Wang, Xin
    Yang, Dongjiang
    Wang, Qiang
    Du, Aijun
    Yao, Xiangdong
    ADVANCED MATERIALS, 2020, 32 (32)
  • [36] Trimetallic Au@PdPt porous core-shell structured nanowires for oxygen reduction electrocatalysis
    Liu, Songliang
    Yin, Shuli
    Zhang, Hugang
    Jiao, Shiqian
    Wang, Ziqiang
    Xu, You
    Li, Xiaonian
    Wang, Liang
    Wang, Hongjing
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [37] Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts
    Wang D.
    Xin H.L.
    Hovden R.
    Wang H.
    Yu Y.
    Muller D.A.
    Disalvo F.J.
    Abruña H.D.
    Nat. Mater., 2013, 1 (81-87): : 81 - 87
  • [38] Carbon-gold core-shell structures: formation of shells consisting of gold nanoparticles
    Choma, Jerzy
    Jamiola, Dominik
    Augustynek, Katarzyna
    Marszewski, Michal
    Jaroniec, Mietek
    CHEMICAL COMMUNICATIONS, 2012, 48 (33) : 3972 - 3974
  • [39] Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers
    Zhu, JM
    Tang, AG
    Law, LP
    Feng, M
    Ho, KM
    Lee, DKL
    Harris, FW
    Li, P
    BIOCONJUGATE CHEMISTRY, 2005, 16 (01) : 139 - 146
  • [40] Preparation of a monolayer array of silica@gold core-shell nanoparticles as a SERS substrate
    Gu, Ciyong
    Man, Shi-Qing
    Tang, Junqi
    Zhao, Zhimin
    Liu, Zhenlu
    Zheng, Zhiyuan
    OPTIK, 2020, 221