Platinum/Tantalum Carbide Core-Shell Nanoparticles with Sub-Monolayer Shells for Methanol and Oxygen Electrocatalysis

被引:0
|
作者
Wang, Zhenshu [1 ]
Kang, Jin Soo [1 ,2 ,3 ,4 ]
Goehl, Daniel [5 ]
Paciok, Paul [6 ,7 ]
Goncalves, Danelle S. [8 ]
Lim, Hyung-Kyu [9 ]
Zanchet, Daniela [8 ]
Heggen, Marc [6 ,7 ]
Shao-Horn, Yang [2 ,10 ,11 ]
Ledendecker, Marc [5 ,12 ]
Roman-Leshkov, Yuriy [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Seoul Natl Univ, Dept Energy Syst Engn, Dept Energy Resources Engn, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Energy & Resources, Seoul 08826, South Korea
[5] Tech Univ Darmstadt, Ernst Berl Inst Tech & Makromolekulare Chem, Dept Chem, D-64287 Darmstadt, Germany
[6] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[7] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[8] Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil
[9] Kangwon Natl Univ, Div Chem Engn & Bioengn, Chunchon 24341, Gangwon Do, South Korea
[10] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[11] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[12] Tech Univ Munich, Dept Sustainable Energy Mat, Campus Straubing Biotechnol & Sustainabil, D-94315 Straubing, Germany
关键词
core-shell nanoparticles; electrocatalysis; fuel cells; methanol oxidation; oxygen reduction; tantalum carbide; TRANSITION-METAL CARBIDES; HIGH-PERFORMANCE; ELECTROCHEMICAL STABILITY; CATALYTIC-ACTIVITY; SINGLE-CRYSTAL; PLATINUM; REDUCTION; OXIDATION; CROSSOVER; ELECTROOXIDATION;
D O I
10.1002/aenm.202304092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell architectures provide great opportunities to improve catalytic activity, but achieving nanoparticle stability under electrochemical cycling remains challenging. Herein, core-shell nanoparticles comprising atomically thin Pt shells over earth-abundant TaC cores are synthesized and used as highly durable electrocatalysts for the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) needed to drive direct methanol fuel cells (DMFCs). Characterization data show that a thin oxidic passivation layer protects the TaC core from undergoing dissolution in the fuel cell-relevant potential range, enabling the use of partially covered Pt/TaC core-shell nanoparticles for MOR and ORR with high stability and enhanced catalytic performance. Specifically, at the anode the surface-oxidized TaC further enhances MOR activity compared to conventional Pt nanoparticles. At the cathode, the Pt/TaC catalyst feature increases tolerance to methanol crossover. These results show unique synergistic advantages of the core-shell particles and open opportunities to tailor catalytic properties for electrocatalytic reactions. Pt/TaC core-shell nanoparticles are synthesized and applied as electrocatalysts for direct methanol fuel cell reactions. TaC core not only manifests an excellent stability, but also contributes to an enhanced methanol-oxidation activity. The capability to handle methanol also leads to improved oxygen-reduction performance under the presence of methanol, showing the robustness of Pt/TaC catalysts regarding the methanol crossover issue. image
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Charge redistribution in core-shell nanoparticles to promote oxygen reduction
    Tang, Wenjie
    Henkelman, Graeme
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (19):
  • [22] Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction
    Kotaro Sasaki
    Kurian A. Kuttiyiel
    Dong Su
    Radoslav R. Adzic
    Electrocatalysis, 2011, 2 : 134 - 140
  • [23] Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing
    Wang, Xiao-Hui
    Peng, Hong-Shang
    Ding, He
    You, Fang-Tian
    Huang, Shi-Hua
    Teng, Feng
    Dong, Biao
    Song, Hong-Wei
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (31) : 16066 - 16071
  • [24] Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction
    Kuttiyiel, Kurian A.
    Sasaki, Kotaro
    Choi, YongMan
    Su, Dong
    Liu, Ping
    Adzic, Radoslav R.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) : 5297 - 5304
  • [25] Tungsten carbide/porous carbon core-shell nanocomposites as a catalyst support for methanol oxidation
    Lang, Xiaoling
    Shi, Meiqin
    Jiang, Yekun
    Chen, Huan
    Ma, Chunan
    RSC ADVANCES, 2016, 6 (17): : 13873 - 13880
  • [26] Explainable AI for optimizing oxygen reduction on Pt monolayer core-shell catalysts
    Omidvar, Noushin
    Wang, Shih-Han
    Huang, Yang
    Pillai, Hemanth Somarajan
    Athawale, Andy
    Wang, Siwen
    Achenie, Luke E. K.
    Xin, Hongliang
    ELECTROCHEMICAL SCIENCE ADVANCES, 2024,
  • [27] Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites
    Duan, H. L.
    Jiao, Y.
    Yi, X.
    Huang, Z. P.
    Wang, J.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (07) : 1401 - 1425
  • [28] Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles
    Hunt, Sean T.
    Milina, Maria
    Wang, Zhenshu
    Roman-Leshkov, Yuriy
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) : 3290 - 3301
  • [29] Pd@Zn core-shell nanoparticles of controllable shell thickness for catalytic methanol production
    Liao, Fenglin
    Wu, Xin-Ping
    Zheng, Jianwei
    Li, Meng-Jung
    Zeng, Ziyan
    Hong, Xinling
    Kroner, Anna
    Yuan, Youzhu
    Gong, Xue-Qing
    Tsang, Shik Chi Edman
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (21) : 7698 - 7702
  • [30] Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts
    Kaplan, D.
    Burstein, L.
    Rosenberg, Yu.
    Peled, E.
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8286 - 8292